

ibm.com/redbooks

Tivoli Management
Services Warehouse
and Reporting

Vasfi Gucer
Naeem Altaf

Iris Co
James A. Edwards
Christopher Layton
Denis Vasconcelos

Paul Wiggett
Alessandro Zonin

Insider’s guide to Tivoli warehousing
and reporting

Tuning Tivoli Data Warehouse
for best performance

BIRT-based reporting
solution included

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Tivoli Management Services Warehouse and
Reporting

January 2007

International Technical Support Organization

SG24-7290-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2007)

This edition applies to IBM Tivoli Monitoring Version 6.1 Fix Pack 3.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxiii.

Contents

Figures . ix

Tables . xvii

Examples. xix

Notices . xxiii
Trademarks . xxiv

Preface . xxv
The team that wrote this IBM Redbook . xxv
Become a published author . xxviii
Comments welcome. xxviii

Chapter 1. Overview of IBM Tivoli Data Warehouse. 1
1.1 IBM IT Service Management. 2
1.2 IBM Tivoli Data Warehouse. 4

1.2.1 Tivoli Data Warehouse and CCMDB. 4
1.3 Tivoli’s reporting strategy . 6

1.3.1 Understanding a report . 6
1.4 Differences between Tivoli Data Warehouse V2.1 and 1.x 9

1.4.1 Implementation differences . 10
1.4.2 Usability differences . 11
1.4.3 Scalability differences . 12

1.5 Tivoli products that exploit Tivoli Data Warehouse V2.1 14
1.5.1 IBM Tivoli Monitoring. 14
1.5.2 IBM Tivoli Service Level Advisor . 15
1.5.3 IBM Tivoli Enterprise Console. 15
1.5.4 IBM Tivoli Composite Application Manager 16

Chapter 2. IBM Tivoli Data Warehouse internals and deployment
configurations . 19

2.1 Tivoli Data Warehouse Version 2.1: High-level architecture 20
2.1.1 Tivoli Data Warehouse Version 2.1 supported platforms 22
2.1.2 Recommended hardware considerations for the Tivoli Data Warehouse

components . 24
2.2 Tivoli Data Warehouse: Deployment scenarios . 24

2.2.1 Small-to-medium installation (400 agents maximum) 25
2.2.2 Large installation (4000 agents maximum) . 27

© Copyright IBM Corp. 2007. All rights reserved. iii

2.2.3 Huge installation (greater than 4000 agents) 31
2.3 Firewall considerations . 33
2.4 High-availability considerations . 42

2.4.1 Tivoli Data Warehouse failure behavior . 43
2.4.2 Recommendations . 44

2.5 Historical data collection architecture . 52
2.5.1 Component flows . 54
2.5.2 Data tables and attributes . 57
2.5.3 Object definitions. 69

2.6 Storage considerations for Tivoli Data Warehouse Version 2.1 71
2.7 Tivoli Data Warehouse Version 2.1 load projection spreadsheet 77

2.7.1 How the spreadsheet works . 78
2.7.2 Details for the agent worksheets. 81
2.7.3 Detail of the Summary worksheet . 88

2.8 Deployment considerations for Tivoli Data Warehouse V1.X clients 91
2.9 Tivoli Warehouse Proxy . 94

2.9.1 Tivoli Warehouse Proxy internals . 95
2.9.2 The Tivoli Warehouse Proxy step by step. 99
2.9.3 Multiple Warehouse Proxies . 101

2.10 Tivoli Summarization and Pruning agent. 103
2.10.1 Tivoli Summarization and Pruning agent internals 103
2.10.2 Tivoli Summarization and Pruning agent step by step 105
2.10.3 Tivoli Summarization and Pruning agent scheduling 106
2.10.4 Tivoli Summarization and Pruning agent processing and time

considerations. 106
2.10.5 Tivoli Summarization and Pruning agent performance tuning . . . 107

Chapter 3. Warehousing in action . 109
3.1 Overview of the lab environment for this book . 110
3.2 Configuring the Tivoli Warehouse Proxy . 111

3.2.1 On a Windows system . 113
3.2.2 On a Linux or an AIX system . 118

3.3 Configuring multiple Warehouse Proxies . 126
3.4 Configuring the Summarization and Pruning agent. 128

3.4.1 On a Windows system . 129
3.4.2 On a Linux or a UNIX system . 138

3.5 Configuring historical data collection. 147
3.6 Tivoli Enterprise Console and Data Warehouse integration 151

3.6.1 Prerequisites . 152
3.6.2 Configuring Tivoli Enterprise Console. 154
3.6.3 Configuring the Tivoli Monitoring for Tivoli Enterprise

Console agent. 157
3.6.4 Collecting the Tivoli Enterprise Console agent historical data 164

iv Tivoli Management Services Warehouse and Reporting

3.6.5 Tivoli Enterprise Console agent: Historical workspace examples. . 165
3.7 Configuring IBM Tivoli Service Level Advisor and Tivoli Data Warehouse

integration. 167
3.7.1 Configuration steps on all supported systems 168
3.7.2 Examples of IBM Tivoli Service Level Advisor reports using Tivoli Data

Warehouse data . 186
3.8 IBM Tivoli Composite Application Manager for Response Time Tracking and

Tivoli Data Warehouse integration . 188
3.8.1 IBM Tivoli Composite Application Manager for Response Time Tracking

agent configuration . 189
3.8.2 Collecting the IBM Tivoli Composite Application Manager for Response

Time Tracking agent historical data . 198
3.8.3 IBM Tivoli Composite Application Manager for Response Time Tracking

agent workspace examples . 199
3.9 IBM Tivoli Composite Application Manager for WebSphere and Tivoli Data

Warehouse integration . 201
3.9.1 IBM Tivoli Composite Application Manager for WebSphere agent

configuration . 203
3.9.2 Collecting the IBM Tivoli Composite Application Manager for

WebSphere agent historical data . 213
3.9.3 IBM Tivoli Composite Application Manager for WebSphere agent

workspace examples . 215
3.10 Tivoli Composite Application Manager for SOA and Tivoli Data Warehouse

integration. 219
3.10.1 IBM Tivoli Composite Application Manager for SOA

agent configuration . 221
3.10.2 Enabling IBM Tivoli Composite Application Manager for SOA

monitoring agent data collectors. 224
3.10.3 Collecting the IBM Tivoli Composite Application Manager for SOA

agent historical data . 227
3.10.4 IBM Tivoli Composite Application Manager for SOA agent workspace

examples . 229

Chapter 4. IBM Tivoli Data Warehouse tuning . 233
4.1 Using data marts . 235

4.1.1 Better reporting performance . 235
4.1.2 Data mart scenario . 235

4.2 Manual creation of data tables . 241
4.2.1 Benefits . 241
4.2.2 Procedure . 241

4.3 Batch option . 243
4.4 Database tuning . 243
4.5 Database parameter tuning. 244

 Contents v

4.5.1 DB2 . 244
4.5.2 Oracle . 248
4.5.3 SQL Server . 249

4.6 Physical design considerations . 253
4.6.1 Hardware and operating system usage . 253
4.6.2 DB2 . 257
4.6.3 Oracle . 264
4.6.4 SQL Server . 268

4.7 SQL tuning . 277
4.7.1 Review application SQL for efficiencies . 277
4.7.2 General SQL review process . 277
4.7.3 General SQL-ANSI tuning tips . 295
4.7.4 Database-specific tuning. 307

Chapter 5. Integrating data from external or third-party applications into
Tivoli Data Warehouse . 315

5.1 The Tivoli Monitoring V6.1 Universal Agent . 316
5.1.1 IBM Tivoli Universal Agent architecture . 317
5.1.2 Data providers: Informing IBM Tivoli Universal Agent how to collect and

monitor . 318
5.1.3 Metafiles: Informing Universal Agent what to collect and monitor. . 321
5.1.4 Manipulating data with Tivoli Enterprise Portal 324
5.1.5 Use cases for the Universal Agent . 326
5.1.6 Universal Agent deployment steps . 326

5.2 Warehousing Data using IBM Tivoli Monitoring 6.1 Universal Agent (script
provider) . 327

5.2.1 Configuring the Tivoli Universal Agent . 327
5.2.2 Viewing the data in the Tivoli Enterprise Portal. 329
5.2.3 Warehousing the Universal Agent data. 331
5.2.4 Creating graphical views for historical data. 339

5.3 Warehousing data using IBM Tivoli Monitoring 6.1 Universal Agent (ODBC
provider) . 348

5.3.1 Configuring the Tivoli Universal Agent . 348
5.3.2 Viewing the data in the Tivoli Enterprise Portal. 370

5.4 Tivoli Storage Manager Universal Agent in the Tivoli Enterprise Portal . 371
5.4.1 Warehousing the Universal Agent data. 372

5.5 Viewing data in Tivoli Enterprise Portal Server using an external ODBC data
source. 379

Chapter 6. OPAL solutions and reporting with BIRT 387
6.1 IBM Tivoli Open Process Automation Library . 388

6.1.1 QuickReporter for IBM Tivoli Monitoring (Primeur) 388
6.1.2 Warehouse Designer for IBM Tivoli Monitoring 6.1 (Axibase) 389

vi Tivoli Management Services Warehouse and Reporting

6.1.3 Warehouse reporting using BIRT . 390
6.2 Case study: Web-publishing with BIRT . 391

6.2.1 Client scenario and requirements . 391
6.2.2 Our lab environment . 392
6.2.3 The developed solution . 392
6.2.4 Report creation: Detailed CPU usage per host 397
6.2.5 Report creation: Disk usage . 411
6.2.6 Report creation: DB2 table spaces . 416
6.2.7 Report creation: Tivoli Enterprise Console throughput 421
6.2.8 Report creation: Tivoli Storage Manager usage 422
6.2.9 Publishing results . 424
6.2.10 How to schedule a report . 425

Chapter 7. Reporting with Crystal Reports. 427
7.1 Crystal Reports . 428
7.2 The developed solution . 428

7.2.1 Installing Crystal Reports XI Release 2. 429
7.2.2 Creating a database connection . 429
7.2.3 Creating a data source in the report . 433
7.2.4 Report creation: CPU Usage by Host . 440
7.2.5 Report creation: Disk Usage . 459

Chapter 8. Troubleshooting . 471
8.1 Warehouse Proxy agent . 472

8.1.1 Environments with multiple Warehouse Proxy agents 473
8.1.2 Problems and solutions. 473

8.2 Summarization and Pruning agent . 475
8.2.1 Problems and solutions. 476

8.3 RDBMS troubleshooting . 476
8.3.1 DB2 . 476
8.3.2 Oracle . 482
8.3.3 Microsoft SQL Server . 487

Appendix A. Example mdl file for the Tivoli Storage Manager Universal
Agent scenario . 491

Example mdl file for Tivoli Storage Manager Universal Agent scenario. 492

Appendix B. Additional material . 521
Locating the Web material . 521
Using the Web material . 522

System requirements for downloading the Web material 522
How to use the Web material . 522

Abbreviations and acronyms . 523

 Contents vii

Related publications . 525
IBM Redbooks . 525
Publications . 525
Online resources . 526
How to get IBM Redbooks . 528
Help from IBM . 528

Index . 529

viii Tivoli Management Services Warehouse and Reporting

Figures

1-1 A comprehensive approach to IBM IT Service Management. 2
1-2 Tivoli software portfolio . 3
1-3 IT Service Management reporting . 5
1-4 Report example . 7
1-5 Dashboards examples . 8
1-6 Business intelligence example. 9
2-1 Tivoli Data Warehouse Version 2.1: Basic architecture. 21
2-2 Basic data flow of Tivoli Data Warehouse architecture 22
2-3 Small Tivoli Data Warehouse environment (400 agents maximum) . . . 26
2-4 Large Tivoli Data Warehouse environment (4000 agents maximum) . . 28
2-5 Huge Tivoli Data Warehouse environment (greater than 4000 agents). 32
2-6 Warehouse Proxy agent in less secure zone. 40
2-7 Warehouse Proxy agent in more secure zone. 41
2-8 Clusters overview. 45
2-9 Idle standby . 46
2-10 Mutual takeover . 47
2-11 Historical data types. 54
2-12 Historical collection location Tivoli Enterprise Monitoring Agent 56
2-13 Tivoli Monitoring 6.1 component model (historical collection location Tivoli

Enterprise Monitoring Server) . 57
2-14 Example of NT_Memory detail and summarization tables. 62
2-15 UNIX Disk table (multiple-instance) example. 63
2-16 Historical data row equations. 73
2-17 Load projection spreadsheet worksheets . 78
2-18 Load projection spreadsheet summary page example 79
2-19 Load projection spreadsheet bar graph example with unused agent

types . 80
2-20 Load projection spreadsheet bar graph example with only used agents 81
2-21 UNIX agent worksheet example . 82
2-22 Load projection spreadsheet attribute group calculated values example84
2-23 Load projection spreadsheet agent summary calculated values exam-

ple . 86
2-24 Load projection spreadsheet summary worksheet: Example 1 88
2-25 Load projection spreadsheet summary worksheet: Example 2 89
2-26 Load projection spreadsheet summary calculated values example. . . . 90
2-27 Tivoli Monitoring V6.1 versus V5.x. 92
2-28 Tivoli Data Warehouse: V1.x versus V2.1 . 93
2-29 Suggested architecture for existing Tivoli Data Warehouse V1.x and Dis-

© Copyright IBM Corp. 2007. All rights reserved. ix

tributed Monitoring V3.7 clients . 94
2-30 Components of the Tivoli Warehouse Proxy agent 95
2-31 Operation of the Tivoli Warehouse Proxy agent 99
3-1 Lab environment for this book . 110
3-2 Windows informational display. 113
3-3 Windows Warehouse Proxy agent: Configuration of communication proto-

col . 114
3-4 Windows Warehouse Proxy agent hub Tivoli Enterprise Monitoring Server

and port configuration . 114
3-5 Windows Tivoli Monitoring Warehouse ODBC configuration confirmation

message . 115
3-6 Windows database selection for Warehouse Proxy configuration 115
3-7 Windows data source configuration window for the Warehouse Proxy 117
3-8 Windows warehouse configuration status message 118
3-9 Windows Warehouse Proxy database configuration completion 118
3-10 Linux and AIX monitoring services window . 120
3-11 Linux and AIX Warehouse Proxy configuration window 121
3-12 Linux and AIX agent parameters tab . 125
3-13 Configuring Summarization and Pruning agent through monitoring con-

sole . 129
3-14 Configuring Summarization and Pruning agent connection protocol . . 129
3-15 Summarization and Pruning agent configuration confirmation 130
3-16 Configuring Summarization and Pruning agent 131
3-17 Configuring the data collection and pruning. 133
3-18 Scheduling the data collection and pruning . 134
3-19 Defining shift periods and vacation settings. 135
3-20 Configuring additional parameters . 136
3-21 Saving the Summarization and Pruning agent configuration 137
3-22 Configuring Summarization and Pruning agent through monitoring con-

sole . 138
3-23 Summarization and Pruning agent connection protocol 139
3-24 Configuring Summarization and Pruning agent 141
3-25 Configuring the data collection and pruning. 142
3-26 Scheduling the data collection and pruning on a Linux or AIX system 143
3-27 Defining shift periods and vacation settings. 145
3-28 Configuring additional parameters on a Linux or UNIX system 146
3-29 TEP client historical collection icon . 147
3-30 History collection configuration . 148
3-31 History configuration panel . 149
3-32 Configuring monitoring agent for Tivoli Enterprise Console. 159
3-33 Configuring Tivoli agent for Tivoli Enterprise Console connection pro-

tocol . 160
3-34 Configuring Tivoli agent for Tivoli Enterprise Console: Health log path161

x Tivoli Management Services Warehouse and Reporting

3-35 Configuring Tivoli agent for Tivoli Enterprise Console: Event distribution
settings. 162

3-36 Tivoli Enterprise Console Server Agent: Default historical groups . . . 164
3-37 Event Activity By Class - Last 24hrs workspace example 166
3-38 Event Throughput - Last 24hrs workspace example 167
3-39 Tivoli Service Level Advisor integration . 168
3-40 Example SLA report (SLO results). 187
3-41 Example SLA report (SLO chart) . 187
3-42 IBM Tivoli Composite Application Manager for Response Time Tracking

and Tivoli Monitoring V6.1 . 189
3-43 Configuring monitoring agent for IBM Tivoli Composite Application Manag-

er for RTT through monitoring console . 192
3-44 Configuring Tivoli agent for IBM Tivoli Composite Application Manager for

RTT connection protocol . 193
3-45 Configuring IBM Tivoli Composite Application Manager for RTT manage-

ment server identity information. 194
3-46 Configuring IBM Tivoli Composite Application Manager for RTT agent195
3-47 Configuring IBM Tivoli Composite Application Manager for RTT manage-

ment server database information . 196
3-48 IBM Tivoli Composite Application Manager for RTT Tracking agent default

historical groups. 199
3-49 Tivoli Composite Application Manager for RTT: Response Time Tracking

workspace example . 200
3-50 Tivoli Composite Application Manager for RTT: Response Time Tracking

Reporting Groups workspace example . 201
3-51 IBM Tivoli Composite Application Manager for WebSphere and IBM Tivoli

Monitoring V6.1 . 202
3-52 Configuring monitoring agent for IBM Tivoli Composite Application Manag-

er for WebSphere through monitoring console 206
3-53 Configuring Tivoli agent for IBM Tivoli Composite Application Manager for

RTT connection protocol . 207
3-54 Configuring IBM Tivoli Composite Application Manager for WebSphere:

Basic information . 208
3-55 Configuring Tivoli Composite Application Manager for WebSphere: Ad-

vanced agent configuration . 209
3-56 Configuring Tivoli Composite Application Manager for WebSphere ad-

vanced collection information. 210
3-57 Configuring Tivoli Composite Application Manager for WebSphere: Ad-

vanced application server information . 211
3-58 IBM Tivoli Composite Application Manager for WebSphere agent default

historical groups. 214
3-59 Tivoli Composite Application Manager for WebSphere: WebSphere App

Server workspace example . 217

 Figures xi

3-60 IBM Tivoli Composite Application Manager for WebSphere: Pool Analysis
workspace example . 218

3-61 IBM Tivoli Composite Application Manager for WebSphere: Thread Pools
workspace example . 219

3-62 IBM Tivoli Composite Application Manager for SOA structure 220
3-63 Configuring monitoring agent for Tivoli Composite Application Manager for

SOA through monitoring console . 222
3-64 Configuring Tivoli agent for Tivoli Composite Application Manager for SOA

connection protocol . 222
3-65 IBM Tivoli Composite Application Manager for SOA agent directory struc-

ture. 224
3-66 Tivoli Composite Application Manager for SOA agent default historical

groups . 228
3-67 Tivoli Composite Application Manager for SOA: Services Management

Agent Environment workspace example . 230
3-68 Tivoli Composite Application Manager for SOA: Performance Summary

workspace example . 231
3-69 Tivoli Composite Application Manager for SOA: Message Summary work-

space example. 232
4-1 General SQL review process . 278
4-2 Access plan shown through Visual Explain tool. 280
4-3 Access plan showing that a tablescan was made 293
4-4 Access plan showing that an index scan was made 294
5-1 Universal Agent high-level architecture and data flow 317
5-2 Attribute group DPLOG in Tivoli Enterprise Portal 325
5-3 AIX disk Universal Agent in the TEP . 329
5-4 DISKDATA data view in TEP . 330
5-5 TEP Historical Configuration tab . 331
5-6 DISKDATA history collection configuration window. 332
5-7 DISKDATA collection interval configuration window 333
5-8 DISKDATA collection location configuration window 334
5-9 DISKDATA warehouse interval configuration window 335
5-10 DISKDATA configuration window . 336
5-11 DISKDATA started status in configuration window 337
5-12 TEP DISKDATA date/time icon . 338
5-13 Customized TEP workspaces example . 339
5-14 Bar chart selection icon . 340
5-15 Bar chart attribute selection window . 340
5-16 Bar chart data view . 341
5-17 Bar chart properties customization window . 342
5-18 Bar chart style parameters properties window. 343
5-19 Stylized bar chart workspace . 344
5-20 Historical time span view configuration window. 345

xii Tivoli Management Services Warehouse and Reporting

5-21 Two-day historical data view . 346
5-22 Historical data plot graph view . 347
5-23 Viewing the data in TEP. 370
5-24 TSM00 data view in Tivoli Enterprise Portal . 371
5-25 TEP Historical Configuration tab . 372
5-26 TSM history collection configuration window . 373
5-27 TSM collection interval configuration window 374
5-28 TSM collection location configuration window 375
5-29 TSM warehouse interval configuration window 376
5-30 TSM configuration window. 377
5-31 Tivoli Storage Manager started status in configuration window. 378
5-32 Tivoli Enterprise Portal Tivoli Storage Manager date/time icon 379
5-33 Creating a query from an ODBC data source 380
5-34 Custom SQL window . 381
5-35 Assigning a custom query to a workspace. 382
5-36 Query selection window . 383
5-37 Custom SQL query workspace view example 384
5-38 Custom data source bar graph view . 385
6-1 Our test environment . 392
6-2 Creating a new project report. 397
6-3 Creating a new data source . 398
6-4 Defining a new data source . 399
6-5 Creating a new data set . 400
6-6 Defining a data set query . 401
6-7 Previewing results . 402
6-8 Defining a new parameter . 403
6-9 Defining the parameter SystemNamePar . 404
6-10 Defining the parameter Timestamp1Par . 405
6-11 Defining the parameter Timestamp2Par . 406
6-12 Defining filtering criteria . 407
6-13 Parameter dialog box. 408
6-14 Defining a simple table layout . 409
6-15 Previewing query result . 409
6-16 Bar chart representation . 410
6-17 Data set definition . 411
6-18 Defining the system name parameter . 412
6-19 Defining the system pattern parameter . 413
6-20 Defining filters . 414
6-21 Runtime parameter box . 415
6-22 Report layout . 415
6-23 Data set definition . 416
6-24 Timestamp parameter definition . 417
6-25 Table space parameter definition. 418

 Figures xiii

6-26 Filtering values. 419
6-27 Runtime parameter window . 419
6-28 Report layout . 420
6-29 Data set definition . 421
6-30 Tivoli Enterprise Console throughput report . 422
6-31 Data set definition . 423
6-32 Filtering value. 423
6-33 Tivoli Storage Manager usage sample layout 424
7-1 Selecting IBM DB2 ODBC Driver . 430
7-2 Creating ODBC connection . 430
7-3 Data Source tab . 431
7-4 TCP/IP tab . 432
7-5 Successful creation of an ODBC data source 433
7-6 Selecting DB2 Unicode . 434
7-7 Entering the connection information . 435
7-8 Successful creation of a native DB2 data source named WAREHOUS436
7-9 Selecting the DSN that you previously created 437
7-10 Entering the connection information . 438
7-11 Successful creation of an ODBC data source named ITM_reporting . 439
7-12 Expanding tables and selecting Linux_CPU . 440
7-13 Selecting the fields that you want to display in your report 441
7-14 Selecting the grouping and sort order . 442
7-15 Selecting the metrics to be summarized and selecting the aggregation

type . 443
7-16 Group sorting . 444
7-17 Selecting chart options. 445
7-18 Record Selection window. 446
7-19 Selecting the template for the report . 447
7-20 Automatically generated report . 448
7-21 Selecting new SQL Expression Field. 449
7-22 Two SQL Expression Fields created: Timestamp, Timestamp_STR. . 450
7-23 Timestamp as a datetime field automatically formatted into system default

format. 451
7-24 Filtering record selection using Select Expert to pick the fields to filter 452
7-25 Selecting Timestamp SQL Expression Field . 453
7-26 %Timestamp is in the period LastFullMonth . 453
7-27 Date ranges functions available in Crystal Reports XI 454
7-28 SQL Query of the report. 455
7-29 Inserting a group in the report . 455
7-30 Selecting a field for grouping and the sort order 456
7-31 Group Header #1 area on the right side of the window 457
7-32 Chart Expert showing %Timestamp_STR and metrics 457
7-33 Bar chart representation of data . 458

xiv Tivoli Management Services Warehouse and Reporting

7-34 Selecting table Disk_D for this report. 459
7-35 Selecting the fields to show in the report . 460
7-36 Inserting groups and sorting in ascending order 461
7-37 Selecting appropriate aggregation for the Summarized Fields 462
7-38 Disk Usage report . 463
7-39 Successful creation of Writetime and Writetime_STR 464
7-40 Replacing the database field WRITETIME with %Writetime 464
7-41 Selecting %Writetime and for each day . 465
7-42 Selecting group layout . 466
7-43 Bar chart representation with text details . 467
7-44 Details of the generated report . 468
7-45 Export dialog box . 469

 Figures xv

xvi Tivoli Management Services Warehouse and Reporting

Tables

2-1 Supported platforms for Tivoli Data Warehouse Version 2.1 database . 22
2-2 Supported platforms for Tivoli Warehouse Proxy agent 23
2-3 Supported platforms for Tivoli Summarization and Pruning agent. 23
2-4 Default port usage for IBM Tivoli Monitoring . 34
2-5 RAID classifications . 49
2-6 Summary of RAID performance characteristics. 50
2-7 Default attribute group examples . 58
2-8 Short-term binary table names. 59
2-9 Linux CPU tables example. 67
2-10 NT OS agents Network Interface attribute group. 72
2-11 Configured historical attribute groups . 76
2-12 Number of rows retained per retention time unit 104
3-1 Lab environment for this book . 111
3-2 The location of the JDBC driver files . 119
3-3 Tivoli Data Warehouse URLs. 122
3-4 JDBC driver names . 123
4-1 Files required for manual table creation. 241
4-2 SQL files created . 242
4-3 Affinity mask values for an 8-CPU system. 250
4-4 Operators that might be displayed in the access plan graph 282
4-5 Operator and operands . 299
5-1 IBM Tivoli Universal Agent data providers . 318
5-2 Data source and preferred data providers . 319
5-3 Typical ports used by the IBM Tivoli Universal Agent 320
5-4 Metafile control statement . 321
6-1 Sample reports. 393
7-1 Sample reports. 428

© Copyright IBM Corp. 2007. All rights reserved. xvii

xviii Tivoli Management Services Warehouse and Reporting

Examples

2-1 IBM Tivoli Monitoring algorithm to calculate listening port 35
2-2 Example for KDC_FAMILIES=IP.PIPE COUNT 36
2-3 docknt ODI file example. 69
2-4 RAS log . 107
3-1 Settings questions . 163
3-2 Configuration values . 163
3-3 Example of dsutil command usage in the lab environment 170
3-4 Example of scmd dfa setTepsConProps command usage 171
3-5 scmd dfa listTEPSagents command output . 172
3-6 scmd register command used in the lab environment 178
3-7 Tivoli Composite Application Manager for RTT configuration options . 197
3-8 Tivoli Composite Application Manager for RTT configuration options . 198
3-9 IBM Tivoli Composite Application Manager for WebSphere agent configu-

ration options . 212
3-10 IBM Tivoli Composite Application Manager for WebSphere agent configu-

ration options . 213
3-11 Tivoli Composite Application Manager for SOA configuration options. 223
3-12 Enabling JAX-RPC handler . 226
4-1 Creating wrapper . 236
4-2 Creating a server definition . 237
4-3 Creating user mapping. 237
4-4 Creating nicknames . 237
4-5 Querying the nicknames . 238
4-6 Creating MQTs. 238
4-7 Querying a MQT . 239
4-8 Double-checking the creation of the MQT . 239
4-9 Create table example. 260
4-10 Create table example. 260
4-11 Refresh option . 267
4-12 Refresh option . 268
4-13 Setting the database’s truncate log on checkpoint option to false 270
4-14 Create view . 271
4-15 DBCC CHECKDB . 272
4-16 DBCC CHECKDB . 272
4-17 Rebuilding indexes in table using DBCC DBREINDEX command. . . . 272
4-18 Rebuilding indexes in table using DBCC INDEXDEFRAG command . 273
4-19 Rebuilding indexes in a table using the ALTER INDEX command . . . 273
4-20 DBCC SQLPERF . 273

© Copyright IBM Corp. 2007. All rights reserved. xix

4-21 GET SNAPSHOT command . 279
4-22 Access plan extracted from the output generated by db2exfmt tool . . 280
4-23 Query used on the XYZ01 report i . 292
4-24 Using select * example . 296
4-25 A more efficient select example . 296
4-26 Using UNION ALL . 297
4-27 Using UNION . 297
4-28 DB2 Query Optimizer changing the SQL . 298
4-29 Not using DISTINCT keyword . 298
4-30 Using DISTINCT keyword . 298
4-31 Using a NOT EXISTS . 299
4-32 Using a NOT IN . 300
4-33 Using IN . 300
4-34 Using BETWEEN . 300
4-35 Using scalar function . 301
4-36 Not using scalar function . 301
4-37 DB2 Query Optimizer changing the first SQL 301
4-38 Using the SUBSTRING function . 302
4-39 Using the LIKE condition . 302
4-40 Sorting based on two columns. 304
4-41 Sorting based on one column . 304
4-42 No sorting. 304
4-43 Select example . 305
4-44 Select example . 305
4-45 DB2 Optimizer changed the query. 305
4-46 Separate subqueries . 306
4-47 Combined subqueries . 306
4-48 Combined subqueries using inline view technique 306
4-49 Changing a table space to read only . 311
4-50 SELECT FOR UPDATE. 311
4-51 Changing a filegroup to read-only . 313
4-52 Select example . 314
5-1 Metafile example . 322
5-2 AIX disk metric .mdl example. 327
5-3 AIX disk metrics query disk.sh script example. 328
5-4 Commands used to import .mdl file on UNIX and Linux 328
5-5 Commands used to import .mdl file on Windows. 351
5-6 Adding a data source example . 379
6-1 Defining DB2 function TWH_TIMESTAMP_FMT. 395
6-2 Defining DB2 functions FIRST_DAY and LAST_DAY 395
8-1 Network problems: Example 1 . 477
8-2 List database directory. 477
8-3 List node directory command. 478

xx Tivoli Management Services Warehouse and Reporting

8-4 Network problems: Example 2 . 478
8-5 List node directory command. 478
8-6 Querying problems: Example 1 . 479
8-7 Querying problems: Example 2 . 479
8-8 Querying problems: Example 3 . 480
8-9 Querying problems: Example 4 . 480
8-10 LIST APPLICATIONS command . 480
8-11 Querying problems: Example 5 . 481
8-12 Refreshing an MQT table. 481
8-13 Querying problems: Example 6 . 481
8-14 Error while creating a MQT . 482
8-15 Querying problems: Example 7 . 482
8-16 Network problems: Example 1 . 482
8-17 Network problems: Example 2 . 483
8-18 Network problems: Example 3 . 483
8-19 Querying problems: Example 1 . 483
8-20 Querying problems: Example 2 . 484
8-21 Querying problems: Example 3 . 485
8-22 Querying problems: Example 4 . 485
8-23 Querying problems: Example 5 . 485
8-24 Querying problems: Example 6 . 486
8-25 Querying problems: Example 7 . 486
8-26 Querying problems: Example 8 . 486
8-27 Querying problems: Example 9 . 486
8-28 Querying problems: Example 10 . 486
8-29 Querying problems: Example 11 . 487
8-30 Network problems: Example 1 . 487
8-31 Network problems: Example 2 . 487
8-32 Network problems: Example 3 . 487
8-33 Network problems: Example 4 . 488
8-34 Querying problems: Example 1 . 488
8-35 Querying problems: Example 2 . 489
8-36 Querying problems: Example 3 . 489
8-37 Querying problems: Example 4 . 489
8-38 Querying problems: Example 5 . 489
8-39 Querying problems: Example 6 . 490
A-1 Example mdl file. 492

 Examples xxi

xxii Tivoli Management Services Warehouse and Reporting

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. xxiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
CICS®
DataPropagator™
DB2 Connect™
DB2 Universal Database™
DB2®
Domino®
Enterprise Storage Server®
eServer™
FlashCopy®

HACMP™
i5/OS®
IBM®
IMS™
Informix®
Lotus Notes®
Lotus®
Notes®
Rational®
Redbooks (logo) ™
Redbooks™

System Storage™
Tivoli Enterprise Console®
Tivoli Enterprise™
Tivoli Management
Environment®
Tivoli®
TME®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

mySAP, SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany
and in several other countries.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

EJB, Java, JavaScript, JDBC, JMX, JRE, JVM, J2EE, Solaris, Sun, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, BizTalk, Microsoft, SharePoint, Windows NT, Windows Server, Windows, and the Windows
logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xxiv Tivoli Management Services Warehouse and Reporting

Preface

As the amount of management data that is gathered continues to grow, the data
is not being used effectively for IT business-relevant decisions. IBM® Tivoli®
Data Warehouse helps solve this problem by being the central repository in
which you can store historical data about your IT infrastructure. This includes
network devices and connections, desktops, hardware, software, events, and
other information. Stored data is subsequently analyzed and used to produce
reports about the behavior of IT components and services.

This IBM Redbook discusses all aspects of IBM Tivoli Data Warehouse V2.1 (the
version that is shipped with IBM Tivoli Monitoring V6.1) including deployment
best practices, scalability, performance optimization, external data integration,
reporting, and troubleshooting. As part of the book, we provide a reporting
solution for Tivoli Data Warehouse data, which is based on the Business
Intelligence and Reporting Tools (BIRT) technology. BIRT is a free,
Eclipse-based reporting tool. This solution was developed based on the
requirements of a real client.

In addition, as an example of a commercial reporting solution, we present the
Crystal Reports solution from Business Objects. Of course, you are not limited in
your choices and can use any reporting solution for reporting against the Tivoli
Data Warehouse data.

We also discuss two solutions that are published on IBM OPAL (Open Process
Automation Library) Web site. These are QuickReporter for IBM Tivoli Monitoring
from Primeur and Warehouse Designer for IBM Tivoli Monitoring 6.1 from
Axibase. Both products are IBM certified solutions, specifically designed for
IBM Tivoli Monitoring.

This book is a reference for IT professionals who implement and use a Tivoli
Data Warehouse environment.

The team that wrote this IBM Redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Austin
Center.

Vasfi Gucer is an IBM Certified Consultant IT Specialist at the ITSO Austin
Center. He started his IBM career as a Network Specialist in 1989. He has over

© Copyright IBM Corp. 2007. All rights reserved. xxv

16 years of experience providing technical support across a variety of IBM
products and technologies, including communications, network, and systems
management. For the last six years, he has been working for IBM ITSO, where
he has been writing IBM Redbooks™ and creating and teaching workshops
around the world on a variety of topics. In this position, he also has worked on
various Tivoli customer projects as a Systems Architect and Consultant. He
holds a Master’s degree in Engineering.

Naeem Altaf is a Senior Software Engineer, working in IBM Tivoli Monitoring
solutions for almost five years now. Altaf is currently working as a Solutions
Architect, helping Business Partners and clients to integrate their products into
IBM Tivoli Monitoring Enterprise Software.

Iris Co is an ACE Certified (Authorized Crystal Engineer) and works for Business
Objects in the Sales Consulting group. She developed some Crystal Reports for
Tivoli in 2004 for specific groups such as IBM Tivoli Monitoring for Transaction
Performance, IBM Tivoli Monitoring for OS, and Security Compliance Manager.

James A. Edwards is a Software Engineer at Tivoli’s Austin location. He has
10 years of experience with IBM, and has worked the last five years at Tivoli. He
manages the IBM Tivoli Monitoring 6.1 Server Scalability lab and has extensive
knowledge of the IBM Tivoli Monitoring 6.1 server products.

Christopher Layton has been with IBM for four years. He joined the Americas
Tivoli Database team just over a year ago. His job responsibilities include
administration of IBM Tivoli Monitoring for Databases on many internal and
commercial accounts. His team supports all the IBM DB2® databases that are
used by Tivoli applications throughout the Americas. They also support Tivoli
Data Warehouse 1.x and 2.1 for many commercial accounts.

Denis Vasconcelos is a Database Administrator with IBM Brazil. He has over
five years of experience on several non-IBM data management systems before
he joined IBM in 2006. His areas of expertise include database administration,
data modeling, heterogeneous database migration, and project management.
Denis has a Bachelor's degree in computer science and a post-graduate degree
in project management.

Paul Wigget is a Senior IT Specialist working for Software Lab Services as part
of the IBM Software Group in South Africa. He has over six years of experience
in Enterprise Systems Management and distributed platform software. He holds
a degree in Information Technology Management from the University of
Johannesburg. His areas of expertise include Tivoli Systems Management
Architecture and Implementation. He has extensive experience in designing,
implementing, and supporting such Tivoli products as Tivoli Management
Framework 3.x and 4.x, Tivoli Monitoring 5.1.x and 6.1, IBM Tivoli Enterprise™
Console 3.x, Tivoli Configuration Manager 4.x, and Tivoli Remote Control 3.8. He

xxvi Tivoli Management Services Warehouse and Reporting

is an IBM Tivoli Certified Deployment Professional in IBM Tivoli Monitoring 6.1
and is certified in Information Technology Infrastructure Library (ITIL®).

Alessandro Zonin is an IT Specialist working in IBM Global Technology
Services Division in Padova (Italy) for nine years. His skills include IBM Tivoli
Monitoring, IBM Tivoli Data Warehouse, IBM Tivoli Configuration Manager,
IBM Tivoli Remote Control, IBM Tivoli Enterprise Console®, and Tivoli
Framework, with expertise in IBM DB2 Universal Database™. Before this role,
he worked as a Database Administrator for many projects for IBM clients in
Northern Italy.

Thanks to the following people for their contributions to this project:

Arzu Gucer
ITSO, Austin Center

Emma Jacobs
ITSO, San Jose Center

Lorinda Schwarz
Erica Wazewski
ITSO, Poughkeepsie Center

Russ Babbitt
Ed Bernal
Jim Carey
Catherine Cook
Jonathan Cook
Arun Desai
Thad Jennings
Pam Geiger
Shayne Grant
John Kogel
IBM U.S.

Marc Christopher Purnell
IBM Germany

Bjoern W. Steffens
IBM Switzerland

Matthias Lau
Bausparkasse Mainz AG

 Preface xxvii

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xxviii Tivoli Management Services Warehouse and Reporting

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Overview of IBM Tivoli Data
Warehouse

This chapter provides a general overview of IBM Tivoli Data Warehouse and
applications that exploit Tivoli Data Warehouse, such as IBM Tivoli Monitoring,
IBM Tivoli Service Level Advisor, IBM Tivoli Composite Application Manager,
and IBM Tivoli Enterprise Console. We discuss the reporting strategy of Tivoli,
how Tivoli Data Warehouse is positioned in the total IBM IT Service Management
solution, the differences between Tivoli Data Warehouse V2.1 and V1.x, and the
benefits of having a central systems management historical database.

This chapter covers the following topics:

� “IBM IT Service Management” on page 2

� “IBM Tivoli Data Warehouse” on page 4

� “Tivoli’s reporting strategy” on page 6

� “Differences between Tivoli Data Warehouse V2.1 and 1.x” on page 9

� “Tivoli products that exploit Tivoli Data Warehouse V2.1” on page 14

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 IBM IT Service Management

The IBM IT Service Management solution is a combination of services, software,
and hardware that improves a company’s ability to manage IT as a business by
integrating, automating, and optimizing key IT processes.

There are three key components:

� IT Operational Management products are the traditional management
products that automate tasks.

� The IT Service Management platform helps to standardize and share
information and administer consistent policy.

� The IT Process Management products integrate and automate processes
(across domains) using the IBM IT Service Management platform and the IT
Operational Management products.

All of the three components mentioned previously are built on IBM and
industry best practices.

Figure 1-1 A comprehensive approach to IBM IT Service Management

The operational management pillar, as shown in Figure 1-1, is divided into
software families. The availability solution addressed in business application
management and server, network, and device management can be viewed as an
integrated offering, as shown in Figure 1-2.

Best Practices

Change and Configuration
Management Database (CCMDB)

Server, Network
& Device

Management
Storage

Management
Security

Management
Business

Application
Management

Service
Delivery

& Support
Service

Deployment
Information

Management
Business
Resilience

IT CRM &
Business

Management

IT Service
Management Platform

IT Process
Management Products

IT Operational
Management Products

2 Tivoli Management Services Warehouse and Reporting

Figure 1-2 Tivoli software portfolio

The Tivoli availability portfolio is divided into:

� Resource monitoring: Measuring and managing IT resource performance,
including servers, databases, and middleware

� Composite application management: Monitoring and managing an application
and its components, understanding applications from the availability
standpoint

� Event correlation and automation: Correlates and automates events or faults
that are generated by resource monitoring, application monitoring, or both to
provide a concise root-cause analysis of the failure in the environment

� Orchestration and provisioning: Provides the ability to deploy or re-deploy
servers or components as requested, on demand, to fulfill processing needs,
if the need arises as indicated by the correlation engine

� Business service management: Provides a high-level view of business status
as reflected by its underlying monitoring components; the view can either be
in real time or based on a service level agreement

The Tivoli Data Warehouse product resides in the Resource Monitoring pillar
from the Tivoli software portfolio.

In the following section, we provide a brief description of the major capabilities
and functions of Tivoli Data Warehouse.

Business Service Management

Event Correlation and Automation

Resource Monitoring

Orchestration and Provisioning

Composite Application Management

Security Storage

 Chapter 1. Overview of IBM Tivoli Data Warehouse 3

1.2 IBM Tivoli Data Warehouse

As the amount of management data that is gathered continues to grow, the data
is not being used effectively for IT business-relevant decisions. Tivoli Data
Warehouse helps solve this problem by being the central repository in which you
can store historical data about your IT infrastructure, including network devices
and connections, desktops, hardware, software, events, and other information.
Stored data is subsequently analyzed and used to produce reports about the
behavior of IT components and services.

1.2.1 Tivoli Data Warehouse and CCMDB

As shown in Figure 1-1 on page 2, at the heart of IBM IT Service Management
lies the Change and Configuration Management Database (CCMDB), which is
much more than a simple registry of physical assets. It provides an accurate
inventory of clients’ IT resources and the relationships between them.

CCMDB delivers a federated view of all your enterprise’s IT data, including
information about hardware, software, and the relationships between them. It
integrates IT service functions into a unified, automated infrastructure
management platform, which helps clients to:

� Consolidate information between disparate IT environments

� Create synergy between different IT service management functions

� Optimize the management of IT service demands

� Maximize IT performance and return on investment (ROI)

4 Tivoli Management Services Warehouse and Reporting

Figure 1-3 shows the IT Service Management reporting structure.

Figure 1-3 IT Service Management reporting

There are various examples of integration between data warehouse database
and CCMDB. By matching the information contained in these two repositories,
you can produce several correlated report, such as:

� Relationship between changes and resulting performance or availability

� Relationship between changes and forecasts or predictive analysis

� Cluster of similar incident or problem patterns

� Availability (Tivoli Composite Application Manager reports feed into IBM Tivoli
Monitoring)

� Compliance (storage and security)

� Capacity planning

� Service level agreement adherence across multiple domains (security,
storage, provisioning, availability)

IT Service Management reporting

Operational Management Products

Events

Monitor Snapshots
Inventory

Configuration
Application

Response Records

Historical Data Warehousing

Basic Product Reports

Enterprise Console

IT Service Management Process Managers

CCMDB
Configuration Items

Process Artifacts and Flows

Basic Historical Reports

Basic Configuration Reports
Basic Process Reports

Events, snapshots, responses
aggregated over time series

User & Account
Directories

Dashboards

Relationship Analysis Reports

How effective is your change process?
Relationship between changes and incidents

How effective is your change process?
Relationship between changes and performance/availability

How efficient is your change process?
Schedule, backlog analysis of change to release

How are your people operating the change process?
Relationship users and changes

How proactive is your change process?
Relationship between changes and historical trends, predictions

 Chapter 1. Overview of IBM Tivoli Data Warehouse 5

1.3 Tivoli’s reporting strategy

One of the greatest assets that is generated by Tivoli products is the data from
which clients monitor their environment, analyze its performance, plan their
activities, and preform their actions. Reporting enables them to make decisions
about their IT deployments and businesses.

Using a unique central repository for systems management data, you can:

� Correlate and analyze data from various monitors in one place

� Add value through cross-platform, business-oriented reports based on an
end-to-end view of the enterprise

� Save costs and have data consistency

1.3.1 Understanding a report

All reports have the same purpose: To convey information. Reports differ from
dashboards and business intelligence in many ways. At this point, a further
classification has to be defined.

� Reports provide status conditions for particular actions based on a time
range. Data can come from a single product or multiple products.

6 Tivoli Management Services Warehouse and Reporting

Figure 1-4 shows an example report.

Figure 1-4 Report example

� Dashboards are not reports. They are a real-time view of a single or a small
group of metrics (for example, how much central processing unit (CPU) is
being consumed right now for a particular server).

 Chapter 1. Overview of IBM Tivoli Data Warehouse 7

Figure 1-5 shows some dashboard examples.

Figure 1-5 Dashboards examples

� Business intelligence (analytical reporting) is the process of analyzing large
amounts of corporate data, which is usually stored in large databases such as
the Data Warehouse, tracking business performance, detecting patterns and
trends, and helping enterprise business users make better decisions.

Focus is to present high level summarized data

• Presents summary data
• Requires considerable data analysis
• Often times for a manager and/or buyer

personas
• Demo floor attraction
• Can drill down to operational views or reports

TBSM 3.1
TM

TSLA TCAM for RTT

8 Tivoli Management Services Warehouse and Reporting

Figure 1-6 shows an example of business intelligence.

Figure 1-6 Business intelligence example

1.4 Differences between Tivoli Data Warehouse V2.1
and 1.x

The new Tivoli Data Warehouse V2.1 architecture is different from the older Tivoli
Data Warehouse V1.x solution. The primary differences between the two
versions can be grouped in the following topics:

� Implementation differences
� Usability differences
� Scalability differences

 Chapter 1. Overview of IBM Tivoli Data Warehouse 9

1.4.1 Implementation differences
There are a number of implementation differences between the two versions.
These are:

� Tivoli Data Warehouse V2.1 uses row-based schema versus star-based
schema.

� Detailed data is now stored in the data warehouse.

� Tivoli Data Warehouse V2.1 supports Oracle®, Microsoft® SQL (MS SQL),
and DB2.

One of the primary architectural differences between Tivoli Data Warehouse
V2.1 and Tivoli Data Warehouse V1.x is that Tivoli Data Warehouse V2.1 is
based on a single database and a simple row-based schema. Version 1.x was
based on a multi-tiered database structure with a central data warehouse
database and a separate data mart database. It also required a more complex
process to load the databases using an extract, transform, and load 1 (ETL1) and
ETL2 process.

The Tivoli Data Warehouse V2.1 has a much simpler data collection and
summarization architecture. The data mart database in Tivoli Data
Warehouse V1.x was based on a star schema. A star schema is a series of fact
and dimension tables that are arranged as a conceptual star. At the core of a star
schema is a technique called database normalization. For more information, see:

http://en.wikipedia.org/wiki/Database_normalization

Row-based schemas are much simpler and are basically stored as a what you
see is what you get arrangement. Row-based schemas are easier to manipulate
than star schemas. However, star schemas are slightly more efficient for
processing very large amounts of data. We cover this in 1.4.3, “Scalability
differences” on page 12.

Another difference between Tivoli Data Warehouse V2.1 and Tivoli Data
Warehouse V1.x is that Version 2.1 now stores detailed level monitoring data
(raw data) in the data warehouse. The V1.x data was always aggregated to the
hourly level when it was stored in the data warehouse. Version 2.1 also improves
the way data aggregation occurs: This version is more flexible in the way in which
attributes can be aggregated, and it always aggregates from the raw data (the
detailed tables). Finally, the Tivoli Data Warehouse V2.1 database is not
restricted to DB2 as the older version was. Version 2.1 now supports DB2 8.2 or
later, Oracle 9 or later, and MS SQL 2000 and later.

10 Tivoli Management Services Warehouse and Reporting

http://en.wikipedia.org/wiki/Database_normalization

1.4.2 Usability differences
The usability differences between the two versions are described as follows:

� Tivoli Data Warehouse V2.1 stores more than 24 hours of detailed data.

� Detailed and summarized data resides in the same database.

� New GUI (IBM Tivoli Enterprise Portal (TEP)) is used to access the Tivoli
Data Warehouse V2.1.

� Tivoli Data Warehouse V2.1 has an improved time-to-value.

The usability differences between Tivoli Data Warehouse V2.1 and Tivoli Data
Warehouse V1.x are significant. One of the significant new features in
Version 2.1 is that clients can now access more than 24 hours of detailed data.
Users can configure a maximum time to keep the detailed data that is
architecturally unlimited. (Planning considerations must apply.) For example,
clients can now keep 30 days of detailed data in Tivoli Data Warehouse V2.1 if
they choose.

Additionally, in Version 2.1, the detailed data is stored in the same database as
the summarized data. Therefore, users no longer have to navigate multiple
interfaces to run reports, because all of the data is in the same database and can
be accessed through a common portal. Access to all levels of data is vastly
improved in Version 2.1. In Tivoli Data Warehouse V1.x, a user had to use the
Web Health Console to get to the detailed data and use a reporting tool such as
Alphabox, Crystal Reports, Brio, or SAS to access the summarized data (the
data mart). In Tivoli Data Warehouse V2.1, users can access all tables (detailed
or summarized data) from the same repository using any relational database
management system (RDBMS) reporting tool or using the Tivoli Enterprise
Portal.

The IBM Tivoli Monitoring V6.1 new portal provides a robust graphical user
interface (GUI). The Tivoli Enterprise Portal interface is used for querying and
viewing all levels of the stored historical data. IBM Tivoli Monitoring V6.1
provides seven agents that are ready to use as is with thousands of queries. The
fact that the combination of IBM Tivoli Monitoring V6.1 and Tivoli Data
Warehouse V2.1 gives the client seamless access to all levels of the data is a
major improvement over the Tivoli Data Warehouse V1.x architecture.

IBM Tivoli Monitoring V6.1 and Tivoli Data Warehouse V2.1 provide an improved
time-to-value proposition. IBM Tivoli Monitoring V6.1 and Tivoli Data Warehouse
V2.1 can be implemented in a matter of hours compared to a few days, and more
likely weeks, with the old Tivoli Data Warehouse V1.x.

 Chapter 1. Overview of IBM Tivoli Data Warehouse 11

1.4.3 Scalability differences
There are a number of scalability differences between the two versions. These
are broken down into the following categories:

� Data collection
� Planning
� Performance

With Tivoli Data Warehouse V2.1, you can now store detailed data in the
database and this data can span for more than 24 hours of data. This provides
tremendous opportunity. However, these features can also create some new
pitfalls if proper planning is not applied. In this section, we discuss some of the
implementation and usability experiences that were encountered when using
IBM Tivoli Monitoring V5.x with Tivoli Data Warehouse V1.x.

The IBM Tivoli Monitoring V5.x-Tivoli Data Warehouse V1.x architecture handled
data collection and retrieval very well. In the Tivoli Data Warehouse V1.x
architecture, data was collected and retrieved by IBM Tivoli Monitoring 5.x from
the endpoints using the Tivoli Framework MDist2 architecture. When a user
requested a Web Health Console window that required detailed information, a
request was made to the gateway and then to the endpoint using MDist2. All data
collections from the endpoints in IBM Tivoli Monitoring V5.x were initiated from
the endpoint’s gateway and the data was uploaded into an RDBMS from a
gateway. This data collection process also made use of the Tivoli Framework’s
MDist2 architecture.

IBM Tivoli Monitoring V6.1 does not use the Tivoli Framework architecture and
MDist2 to collect data. In Version 6.1, if a user performs a query against detailed
data for less than 24 hours for a large number of servers, the overhead of the
request can affect the performance of the overall IBM Tivoli Monitoring V6.1
monitoring infrastructure. See 2.5, “Historical data collection architecture” on
page 52, for more information about how data is stored and retrieved in Tivoli
Data Warehouse V2.1.

In contrast, IBM Tivoli Monitoring V5.x and the MDist2 architecture always
retrieved and collected data using a multi-tier structure (for example, endpoint →
gateway → RDBMS). MDist2 also has a robust architecture for throttling and
tuning data movement throughout an infrastructure.

Probably a more important scalability difference is that clients can now collect an
enormous amount of data in Tivoli Data Warehouse V2.1. The collection and
reporting against this data can have an impact on the IBM Tivoli Monitoring V6.1
monitoring infrastructure. In Tivoli Data Warehouse V1.x, all of the warehouse
data was already aggregated to the hourly level on the endpoint and only the
aggregated data was uploaded to the gateways. With the new Tivoli Data

12 Tivoli Management Services Warehouse and Reporting

Warehouse V2.1, historical data is collected at the agent or at the Tivoli
Enterprise Monitoring Server. These agents or servers initiate Remote
Procedure Call (RPC) requests to Warehouse Proxy Agents that load the data in
a database using Open Database Connectivity (ODBC) or Java™ Database
Connectivity (JDBC™) calls depending on the platform where the Warehouse
Proxy Agent is installed.

User reporting can also negatively affect monitoring performance, depending on
the configuration settings. In the Tivoli Data Warehouse V1.x architecture, the
data mart was in a separate database from the operational data (the IBM Tivoli
Monitoring RDBMS Interface Module (RIM) database). In Tivoli Data
Warehouse V2.1, a single database is both the operational database and the
data warehouse database. In Version 2.1, multiple users can run the same report
against hundreds of servers for millions of lines of data. In Tivoli Data
Warehouse V1.x, the data was summarized and also normalized using data
marts and star schemas. Users might want to consider using an original
equipment manufacturer (OEM) tool to create online analytical processing
(OLAP) cubes or data marts in Tivoli Data Warehouse V2.1 to offload some of
the reporting requirements. For using data marts in Tivoli Data Warehouse V2.1,
see 4.1, “Using data marts” on page 235.

For more information about deployment considerations of existing Tivoli Data
Warehouse V1.x clients, see 2.8, “Deployment considerations for Tivoli Data
Warehouse V1.X clients” on page 91.

Note: With IBM Tivoli Monitoring V6.1 Fix Pack 2, you can have more than
one Warehouse Proxy agents in your Tivoli Data Warehouse V2.1
environment, which improves data collecting performance. For using multiple
Warehouse Proxy agents, see 2.9.3, “Multiple Warehouse Proxies” on
page 101.

 Chapter 1. Overview of IBM Tivoli Data Warehouse 13

1.5 Tivoli products that exploit Tivoli Data
Warehouse V2.1

In this section, we provide a general overview of the Tivoli products that currently
exploit the Tivoli Data Warehouse capabilities. You can refer to Chapter 3,
“Warehousing in action” on page 109, for more information about how these
products are integrated with Tivoli Data Warehouse V2.1.

1.5.1 IBM Tivoli Monitoring

IBM Tivoli Monitoring monitors and manages system and network applications
on a variety of platforms and keeps track of the availability and performance of all
parts of your enterprise. IBM Tivoli Monitoring provides reports that you can use
to track trends and troubleshoot problems. The following sections give you an
overview of the major components that make up IBM Tivoli Monitoring V6.1.

IBM Tivoli Enterprise Monitoring Server
The Tivoli Enterprise Monitoring Server is the focal point and main component
within IBM Tivoli Monitoring for managing your environment. The hub
communicates with agents and other Tivoli Enterprise Monitoring Servers.
Remote Tivoli Enterprise Monitoring Server allows you to minimize network
traffic and support larger number of agents.

IBM Tivoli Enterprise Portal Server
The Tivoli Enterprise Portal Server is used to get a high-level overview of the
monitoring environment. By using the navigator window, managed systems are
displayed in a tree-like structure. Workspaces can be customized within the
portal to suit just about any monitoring requirement. There are two components
to the Tivoli Enterprise Portal. The Tivoli Enterprise Portal Server communicates
directly with the hub monitoring server. Tivoli Enterprise Portal Server contains a
database that is the repository for all users of the Tivoli Enterprise Portal Server
and their workspace configurations.

IBM Tivoli Enterprise Portal Client
The portal client, either Web browser based or Windows® based client,
communicates directly with the Tivoli Enterprise Portal Server.

Agents
Agents are data collectors that monitor systems, subsystems, or applications,
and pass data to the TEP through the Tivoli Enterprise Monitoring Server. A
Tivoli Enterprise Monitoring Agent interacts with a single system, and in most

14 Tivoli Management Services Warehouse and Reporting

cases, is installed on the monitored system. Multiple agents are typically installed
on a single server.

There are three type of agents that can be classified into these groups:

� Operating system agents: Monitor the availability and performance of a
system from the operating system level

� Application agents: Monitor the availability and performance of an application
and its subsystems

� Universal agent: An agent that can be customized to monitor any data that
you collect in your environment through the use of several different data
providers that are supported

1.5.2 IBM Tivoli Service Level Advisor

IBM Tivoli Service Level Advisor provides service level management (SLM)
capabilities for enterprise organizations that have to measure, manage, and
report on availability and performance aspects of their internal IT infrastructure.
The SLM capabilities of IBM Tivoli Service Level Advisor complement the
performance and availability measurement functions of other Tivoli products,
such as IBM Tivoli Composite Application Manager and IBM Tivoli Business
Systems Manager.

By using IBM Tivoli Service Level Advisor, you can:

� Identify existing service levels and new requirements
� Define offerings with OLAs and underpinning contracts
� Agree on SLAs and maintain service catalog
� Monitor and evaluate service levels
� Report to the client and IT organization
� Review and adjust service provision, service level agreement (SLA)

1.5.3 IBM Tivoli Enterprise Console

IBM Tivoli Enterprise Console is designed to help simplify a broad range of event
management and correlation activities across virtually the entire IT environment.
By including built-in intelligence to take corrective action automatically, it can help
you to increase efficiency, reduce downtime, and meet important SLAs for critical
business requirements.

Tivoli Enterprise Console consolidates events from networks, hardware, and
software throughout the environment to provide an overview of your IT
infrastructure. Using the Web console, you can analyze events to diagnose the
root cause of problems and accelerate problem resolution. When preconfigured
rules are used, responses can be automated to provide self-healing fixes. These

 Chapter 1. Overview of IBM Tivoli Data Warehouse 15

built-in actions coupled with escalation and notification capabilities can help you
to proactively manage your environment.

Additionally, when you use IBM Tivoli Enterprise Portal to combine this events
view from Tivoli Enterprise Console with IBM Tivoli Monitoring, you have a single
interface for identifying, diagnosing, and resolving problems.

1.5.4 IBM Tivoli Composite Application Manager

The aim of Tivoli Composite Application Manager is to simplify and enhance
distributed application management. Application components can reside on
multiple servers, across different platforms, and Java 2 Platform, Enterprise
Edition (J2EE™) environments, and even through mainframes. The complexity
of understanding and solving application-related problems, typically around
performance issues, requires a cohesive set of tools to be able to provide an
end-to-end view of the application.

� IBM Tivoli Composite Application Manager for Response Time Tracking
manages Application Response Measurement (ARM) instrumented tools to
track and break down distributed application response time.

– Provides application topology information to IBM IT Service Management
Change and Configuration Management Database (CCMDB) to help
manage application dependencies, and provides monitoring status for the
IBM Tivoli Availability Process Manager

– Delivers full integration of the Web Response Monitor, designed to provide
client, network, and server response times and metrics for Web
applications without requiring agents on user systems

– Helps collect and report data by unique transaction, including transaction
volume data in reports

– Offers custom reporting using Tivoli Enterprise Portal workspaces or direct
Structured Query Language (SQL) queries of database views

– Helps report on monitoring by application, client, and location

– Helps simplify monitoring when using Mercury LoadRunner script

� IBM Tivoli Composite Application Manager for Internet Service
Monitoring V6.0 is designed to monitor the availability, response time, and
usability of Internet applications.

– Can record and simulate complex user transactions and is designed to
provide user-side performance and availability metrics by acting like a
client, user, or other system

– Metrics can be used to report on real-time service levels based on actual
delivered services to the user

16 Tivoli Management Services Warehouse and Reporting

� IBM Tivoli Composite Application Manager for J2EE Operations V6.0 helps
monitor the health and performance of IBM WebSphere® and BEA WebLogic
applications. It is designed to measure hard-to-access application-specific
metrics from within the application. Thresholds can be predefined to help alert
administrators of problems before they occur, and metrics collected can be
diagnosed to help troubleshoot problems. IBM Tivoli Composite Application
Manager for J2EE Operations:

– Helps proactively monitor performance thresholds for changes in status

– Sends alerts about potential problems before brown outs and outages
affect users

– Delivers automated action for pre-emptive problem resolution

� Tivoli Composite Application Manager for Service-Oriented Architecture
(SOA) provides a management solution across the entire application life cycle
for services architects, administrators, subject matter experts, operators,
consultants, and others involved in the development, testing, deployment,
and ongoing management of services-based systems. The key features of
Tivoli Composite Application Manager for SOA include:

– Discovery, monitoring, diagnostics, and automated control of SOA
services

– Support for key SOA platforms including WebSphere Application Server,
IBM WebSphere Process Server, IBM WebSphere Business Integration
Server Foundation, Microsoft .NET and BEA WebLogic

– Support for services deployed using SOAP over HTTP, SOAP over
HTTPS, SOAP over Java Message Service (JMS) and WebSphere
Application Server Service Integration Bus

– Ability to understand service relationships

– Drill-down from services to application components and IT resources
within the Tivoli Enterprise Portal to identify the source of bottlenecks or
failures to simplify and speed up problem identification and resolution time

� Tivoli Composite Application Manager for WebSphere V6.0 is a
comprehensive performance and availability solution that provides effective
application management for enterprise J2EE applications, including
composite applications that have a J2EE user interface coupled with other
back-end systems such as IBM Customer Information Control System
(CICS®) and IBM Information Management System (IMS™). The key
features of Tivoli Composite Application Manager for WebSphere V6.0 are:

– Helps to quickly identify application and server-level problems that impact
user experience

– Helps to monitor the health of production WebSphere and J2EE
applications using light-footprint agents

 Chapter 1. Overview of IBM Tivoli Data Warehouse 17

– Integrates easily with Tivoli Enterprise Portal

– Delivers low-level application trace data to IBM Rational® Eclipse
developer tools when used in combination with IBM Tivoli Composite
Application Manager for Response Time Tracking

– Uses powerful memory diagnostic tools

– Views flows of transactions that span from J2EE into other back-end
systems including CICS and IMS environments

– Creates reports that can reveal performance trends with deep-dive
analytical views

18 Tivoli Management Services Warehouse and Reporting

Chapter 2. IBM Tivoli Data Warehouse
internals and deployment
configurations

This chapter explains the details of how to perform data gathering, data
aggregation, and data pruning on Tivoli Data Warehouse Version 2.1. We also
introduce some deployment configurations and sizing considerations.

This chapter discusses the following topics:

� “Tivoli Data Warehouse Version 2.1: High-level architecture” on page 20

� “Tivoli Data Warehouse: Deployment scenarios” on page 24

� “Firewall considerations” on page 33

� “High-availability considerations” on page 42

� “Historical data collection architecture” on page 52

� “Storage considerations for Tivoli Data Warehouse Version 2.1” on page 71

� “Tivoli Data Warehouse Version 2.1 load projection spreadsheet” on page 77

2

© Copyright IBM Corp. 2007. All rights reserved. 19

� “Deployment considerations for Tivoli Data Warehouse V1.X clients” on
page 91

� “Tivoli Warehouse Proxy” on page 94

� “Tivoli Summarization and Pruning agent” on page 103

2.1 Tivoli Data Warehouse Version 2.1: High-level
architecture

The Tivoli Data Warehouse is the database storage that contains all of the
historical data collection for your Tivoli Monitoring environment. At least one
Tivoli Warehouse Proxy must be installed to use the Tivoli Data Warehouse
function within any Tivoli Monitoring environment. In large-scale deployments, a
Tivoli Data Warehouse can be shared among monitoring installations.

The key features of Tivoli Data Warehouse Version 2.1 are:

� Simple, efficient, and robust infrastructure to store data from systems
management platforms

� Support for both detailed, granular and aggregated collection and reporting

� Simple integration with Tivoli Enterprise Portal (TEP). All of the data
(real-time, short-term and long-term operational and aggregated) is available
from the Tivoli Enterprise Portal through the same mechanisms

20 Tivoli Management Services Warehouse and Reporting

Figure 2-1 shows a basic data warehouse and data collection infrastructure.

Figure 2-1 Tivoli Data Warehouse Version 2.1: Basic architecture

There are four major components that make up the infrastructure for the Tivoli
Data Warehouse.

� The monitoring agents: These are responsible for the collection of the
detailed metric data from a monitored system or application.

� The Tivoli Warehouse Proxy: This agent is responsible for receiving this
detailed metric data from the agents and inserting it into the Tivoli Data
Warehouse.

� The Tivoli Summarization and Pruning agent: This agent is responsible for
summarizing the detailed data within your Tivoli Data Warehouse and pruning
data that is no longer required.

� The Tivoli Data Warehouse: This is the data warehouse itself that is
responsible for storing and providing the detailed and summarized data for all
captured agents.

Desktop Client Browser Client

Tivoli Data Warehouse V2.1

Tivoli Enterprise Portal
Server

Tivoli Enterprise Portal
Server Database

Hub Tivoli Enterprise
Monitoring Server

Remote Tivoli Enterprise
Monitoring Server

(Optional)

Tivoli Enterprise
Monitoring Server

Database

Application
Agent Universal AgentOperating

System Agent

Tivoli
Monitoring
V5.x Agent

Warehouse ProxySummarization &
Pruning Agent

Optional 2nd

Warehouse Proxy

Agents From
Another Remote
Tivoli Enterprise

Monitoring
Server

Reporting ToolsTivoli Service Level
Advisor

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 21

The data flow of these component is further illustrated in Figure 2-2.

Figure 2-2 Basic data flow of Tivoli Data Warehouse architecture

2.1.1 Tivoli Data Warehouse Version 2.1 supported platforms

Table 2-1, Table 2-2, and Table 2-3 on page 23 show the supported platforms for
the Tivoli Data Warehouse related components. Table 2-1 lists the supported
platforms for the Tivoli Data Warehouse Version 2.1 database.

Table 2-1 Supported platforms for Tivoli Data Warehouse Version 2.1 database

IBM DB2 MS SQL Oracle

IBM DB2 Universal Database V8
(UDB V8), Fix Pack 10 and later
on the following operating
systems:
� IBM AIX® V5.3
� Solaris™ 10
� Windows 2003 Server
� SUSE Linux® Enterprise

Server 9 for Intel®
� Red Hat Enterprise Linux 4

for Intel

� MS SQL 2000
� MS SQL 2005

Oracle V9.2, 10g Release 1, and
10g Release 2 on the following
operating systems:
� AIX V5.3
� Solaris 10
� Windows 2003 Server
� SUSE Linux Enterprise

Server 9 for Intel
� Red Hat Enterprise Linux 4

for Intel

22 Tivoli Management Services Warehouse and Reporting

Table 2-2 lists the supported platforms for Tivoli Warehouse Proxy agent.

Table 2-2 Supported platforms for Tivoli Warehouse Proxy agent

Table 2-3 lists the supported platforms for Tivoli Summarization and Pruning
agent.

Table 2-3 Supported platforms for Tivoli Summarization and Pruning agent

Windows AIX Linux

� Windows 2000 Server and
Advanced Server

� Windows XP
� Windows 2003 Server SE and

EE (32-bit) with Service Pack 1
� Windows 2003 on VMWare

ESX Server V2.5.2

� AIX V5.3
(32-bit/64-bit)

� Red Hat Enterprise Linux 3 on Intel
� Red Hat Enterprise Linux 3 and 4 on

IBM eServer™ zSeries® 31-bit
� Red Hat Enterprise Linux 3 and 4 on

zSeries 64-bit
� Red Hat Enterprise and Desktop

Linux 4 Intel
� Red Hat Enterprise Linux 4 for Intel

on VMWare ESX Server V2.5.2
� SUSE Linux Enterprise Server 8

and 9 Intel
� SUSE Linux Enterprise Server 8

and 9 for zSeries 31-bit
� SUSE Linux Enterprise Server 8

and 9 for zSeries 64-bit

Windows AIX Linux

� Windows 2000 Professional
� Windows 2000 Server and

Advanced Server
� Windows XP
� Windows 2003 Server SE and

EE (32-bit) with Service Pack 1
� Windows 2003 on VMWare

ESX Server V2.5.2

� AIX V5.1
(32-bit/64-bit)

� AIX V5.2
(32-bit/64-bit)

� AIX V5.3
(32-bit/64-bit)

� Solaris Operating
Environment V8
(32-bit/64-bit)

� Solaris V9 (SPARC)
� Solaris V10 (SPARC)

� Red Hat Enterprise Linux 2.1 Intel
� Red Hat Enterprise Linux 3 on Intel
� Red Hat Enterprise Linux 3 and 4

on zSeries 31-bit
� Red Hat Enterprise Linux 3 and 4

on zSeries 64-bit
� Red Hat Enterprise and Desktop

Linux 4 Intel
� Red Hat Enterprise Linux 4 for Intel

on VMWare ESX Server V2.5.2
� SUSE Linux Enterprise Server 8

and 9 Intel
� SUSE Linux Enterprise Server 8

and 9 for zSeries 31-bit
� SUSE Linux Enterprise Server 8

and 9 for zSeries 64-bit

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 23

2.1.2 Recommended hardware considerations for the Tivoli Data
Warehouse components

The hardware considerations for the physical layout of the Tivoli Data Warehouse
components are:

� Warehouse Proxy agent server

– Processors: Minimum of four for a large or huge enterprise

� Database server

– Processors: Minimum of four processors
– Disk drives: 16 to 24 disk drives for a large or huge enterprise

For a more detailed description of estimation and sizing your Tivoli Data
Warehouse Database, see 2.6, “Storage considerations for Tivoli Data
Warehouse Version 2.1” on page 71, and 2.7, “Tivoli Data Warehouse Version
2.1 load projection spreadsheet” on page 77.

� Summarization and Pruning agent server

– Processors: Minimum of four processors
– Memory: Minimum 2 GB

� Database server and Summarization and Pruning agent on the same
machine

– Processors: Minimum of four processors
– Memory: Minimum 4 GB
– Disk drives: 16 to 24 disk drives for a large or huge enterprise

2.2 Tivoli Data Warehouse: Deployment scenarios

The deployment scenarios in this section attempt to provide a realistic
understanding of architecture design. Use these scenarios mainly for guidance to
assist in the planning and deployment strategy used for a production installation,
because every deployment strategy is unique and only proper planning can
guarantee a successful implementation.

We cover three types of environments:

� Small-to-medium installation (400 agents maximum)
� Large installation (4000 agents maximum)
� Huge installation (greater than 4000 agents)

24 Tivoli Management Services Warehouse and Reporting

2.2.1 Small-to-medium installation (400 agents maximum)

The small-to-medium installation is a fundamental design that uses only the
minimum required components. This scenario is perfect for prototyping IBM
Tivoli Monitoring and Tivoli Data Warehouse or using it within a production
installation consisting of 400 agents. In fact, IBM Tivoli Monitoring V6.1 by design
excels in superiority for the small-to-medium installation. The out-of-box
monitoring collections, graphical user interface (GUI) presentation layer,
historical data collection, and robustness provide a full monitoring solution with a
modest total cost of ownership (TCO). It is implemented with the minimum
hardware requirements necessary for a production IBM Tivoli Monitoring
installation.

The installation consists of the following components:

� Hub Tivoli Enterprise Monitoring Server
� Tivoli Enterprise Portal Server
� Tivoli Enterprise Portal (client and browser client)
� One Tivoli Warehouse Proxy agent
� Tivoli Data Warehouse
� Tivoli Summarization and Pruning agent

Note: Our classification is based on the number of IBM Tivoli Monitoring V6.1
agents. In practice, sometimes the number of employees is used to define the
size of a business. For example, companies with up to 1000 employees are
considered as small-to-medium businesses.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 25

Figure 2-3 depicts the small-to-medium topology. It provides an overview of each
IBM Tivoli Monitoring connected component.

Figure 2-3 Small Tivoli Data Warehouse environment (400 agents maximum)

Although it can handle agent tasks directly, we recommend that you do not use
the hub Tivoli Enterprise Monitoring Server for this purpose. Instead, it must
focus on data collecting and processing tasks between the Tivoli Enterprise
Portal Server and itself. If the environment expands, install additional remote
Tivoli Enterprise Monitoring Server and possibly additional Warehouse Proxies
to process the additional agent requirement. Additional agent deployments
increase processing requirements for the hub Tivoli Enterprise Monitoring
Server, which can degrade if the hub is allowed to handle agent tasks directly.

For an average Tivoli Data Warehouse installation in a small-to-medium
installation, having the Warehouse Proxy agent and the Tivoli Data Warehouse
repository on the same system is sufficient. One Warehouse Proxy is more than
sufficient. This installation provides historical data collection without the
additional hardware. It is still a wise decision to monitor the Tivoli Data
Warehouse and Warehouse Proxy after installation to ensure that the processing
rate is on target.

26 Tivoli Management Services Warehouse and Reporting

2.2.2 Large installation (4000 agents maximum)

Building on the fundamentals of the small-to-medium installation, the large
installation focuses on scalability. This Tivoli Monitoring environment consists of
4000 agents within a single Tivoli Monitoring installation. It requires the
recommended hardware specification or later to properly scale the infrastructure.

The installation consists of the following components:

� Hub Tivoli Enterprise Monitoring Server

� Several remote Tivoli Enterprise Monitoring Servers

� Tivoli Enterprise Portal Server

� Tivoli Enterprise Portal (client and browser client)

� At least one Tivoli Warehouse Proxy agent (additional agents are optional
and are based on the number of agents and the processing rate of data
collection on these agents)

� Tivoli Data Warehouse

� Tivoli Summarization and Pruning agent

Figure 2-4 depicts the comprehensive architecture for all the interconnected
components. It shows the recommended strategy for the Tivoli historical data
collection. We advise that you configure the historical collection to be collected
directly from the agent as opposed to collection at a Tivoli Enterprise Monitoring
Server.

Note: A small environment (less than 200 agents) might collocate the Tivoli
Enterprise Monitoring Server and the Tivoli Enterprise Portal Server on a
single hardware. The requirement for remote Tivoli Enterprise Monitoring
Server most likely does not exist at all.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 27

Figure 2-4 Large Tivoli Data Warehouse environment (4000 agents maximum)

Performing an accurate plan and assessment stage is imperative for the large
installation. Mapping all component topology with the recommended hardware
specifications is critical to achieve a highly distributed environment with realistic
goals. Have a thorough understanding of the monitoring environment before you
proceed to implement any architectural design. It is important to account for all

Note: Figure 2-4 shows the agents connecting to a remote Tivoli Enterprise
Monitoring Server and only the remote Tivoli Enterprise Monitoring Server
connecting to the Warehouse Proxy Agent. This is true if the historical data is
stored at the remote Tivoli Enterprise Monitoring Server, but if the historical
data is stored at the agent, both the OS agent and Application agent should
also connect to the Warehouse Proxy Agent.

Also, when you have two distinct IBM Tivoli Monitoring installations, it is
important to note that both installations should use the same user ID to
connect to the Tivoli Data Warehouse database, as this user ID will then
become the first part name of all the Tivoli Data Warehouse tables. Having
two user IDs prevents querying with one unique query information for all the
systems of the same attribute group in the entire enterprise, as two tables with
two different first part will exist.

28 Tivoli Management Services Warehouse and Reporting

the variables within the topology. Substantial consideration must be given to the
infrastructure hardware requirements and the underlying network topology.
Network bandwidth, latency, and firewall restriction require assessment.

IBM Tivoli Monitoring is ideal for small-to-medium installations. After installation,
it begins using the best practice functionality immediately. If default historical
data collection is turned on, the default attribute groups begin analysis and
warehousing immediately. These default services can impede the large
installation performance throughput, especially if unnecessary attributed group
collections are enabled. It is vital to the performance of the large installation that
only the required attribute group data collection is enabled.

A large monitoring installation supports approximately 1500 managed systems
(servers on which monitoring agents reside) in an environment. For the large
installation, the estimate is three agents per managed system. In this installation,
a disproportionate distribution of agents is highly anticipated, and this scenario
must complement your own environment analysis phrase. The recommended
distribution is 400 agents for 10 remote Tivoli Enterprise Monitoring Servers.
Keeping 400 agents as the high point per monitoring server allows for capacity
expansion without exhausting the resources of the infrastructure.

The Tivoli Data Warehouse data requirement can be substantial. We advise you
to separate the Tivoli Warehouse Proxy agent and the Tivoli Data Warehouse
repository between two systems. Install the Tivoli Summarization and Pruning
agent on the Tivoli Data Warehouse system. It is advisable to keep these two
components together. Depending on the number of agents collecting data, add
multiple Warehouse Proxies to allow for efficient data collection from the
managed agents.

Important: We strongly discourage you from turning on the default historical
data collection. For example, the Linux_Process attribute group is one of the
default groups for the Linux agent, and it can collect a very large amount of
data.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 29

A large installation can introduce the IBM Tivoli Enterprise Console as part of the
topology. IBM Tivoli Monitoring has built-in capabilities for event processing that
work extremely well in the small-to-medium installation. However, the large
installation can contain a reasonable increase in volume of event flow, and the
Tivoli Enterprise Console is better adapted for large event flow management and
correlation. The Tivoli Enterprise Console can be considered an event
consolidation manager of managers. By using the Tivoli Monitoring For Tivoli
Enterprise Console agent, the Tivoli Enterprise Console can provide Tivoli Data
Warehouse Version 2.1 integration. This can provide valuable reporting and
trend analysis capabilities for the events flowing through to the Tivoli Enterprise
Console server and its event processing engine.

The TCO is still nominal compared to IBM Tivoli Monitoring functionality, despite
the large hardware requirements that are necessary to scale this installation
properly. The entire large installation can be managed from a single GUI
presentation layer down to installing and upgrading agents.

Tip: It is acceptable to put the Summarization and Pruning agent on a
separate machine from the warehouse database, if there is a fast network
connection between them. Separating the Summarization and Pruning agent
from the database increases the path for accessing the database, and it
increases the amount of hardware devoted to the Summarization and Pruning
function.

Also, it is important to set the KSY_MAX_WORKER_THREADS variable to an
appropriate value. If the Summarization and Pruning agent is on the same
machine as the warehouse database, set KSY_MAX_WORKER_THREADS
to one less than the number of processors. This enables spare capacity for
Warehouse Proxy agent inserts and TEP queries. If the Summarization and
Pruning agent is on a separate machine, you can set a higher value for
KSY_MAX_WORKER_THREADS. You can monitor the database server to
make sure that Warehouse Proxy agent inserts are still occurring without
problems, and that TEP queries for historical data are being processed
normally.

30 Tivoli Management Services Warehouse and Reporting

2.2.3 Huge installation (greater than 4000 agents)

The huge installation scenario provides a guideline for any IBM Tivoli Monitoring
installation that exceeds 4000 agents, or approximately 1500 monitored servers.
The scope of the huge installation is similar to the large installation, except for
additional configuration guidance.

The installation consists of the following components:

� Multiple Tivoli Enterprise Monitoring Servers
� Multiple Tivoli Enterprise Portal Servers
� Multiple Tivoli Enterprise Portals (Client and browser client)
� Multiple Tivoli Warehouse Proxy agents
� Tivoli Data Warehouse
� Tivoli Summarization and Pruning agent

Figure 2-5 depicts the interconnections between two autonomous IBM Tivoli
Monitoring installations. It shows the high-level component interaction between
two installations that handle 4000 agents each, totaling 8000 agents entirely.

Tip: A large environment (less than 4000 agents) locates the Tivoli Enterprise
Monitoring Server and the Tivoli Enterprise Portal Server on different
hardware. To provide scalability, you can deploy additional remote Tivoli
Enterprise Monitoring Server and additional Warehouse Proxies.

Depending on the amount of users, you can also deploy additional Tivoli
Enterprise Portal Servers. Note that in that case, the second Tivoli Enterprise
Portal Server must be considered as read only. Multiple Tivoli Enterprise
Portal Servers do not clone each other, you have to do this manually. You
have to manually export tables from your existing Tivoli Enterprise Portal
Server database and import them on the new machine. Specifically, you have
to copy KFWWORKSPACE table (includes your workspace presentation
definitions), KFWPRESENTATION, and KFWPRESDEF tables. If you created
any new users besides sysadmin, you also have to copy the KFWUAXREF,
KFWUSER, and KFWUSERTOPO tables.

One other use of multiple Tivoli Enterprise Portal Servers is for testing the new
maintenance; to clone current Portal server, apply maintenance and then test
it out.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 31

Figure 2-5 Huge Tivoli Data Warehouse environment (greater than 4000 agents)

The recommended deployment strategy is the same as for the large installation,
except for the Tivoli Data Warehouse, Warehouse Proxy, and Summarization
and Pruning agent. A huge installation can warehouse historical data collections
to one single database server repository from two distinct IBM Tivoli Monitoring
installations. Additionally, multiple Warehouse Proxies can be used per
IBM Tivoli Monitoring installation.

The two installations are still built separately from each other. The only deviation
is that one IBM Tivoli Monitoring installation requires a logical association as the
master control for the Summarization and Pruning agent.

Important: As described in 2.2.2, “Large installation (4000 agents maximum)”
on page 27, make sure that only the required attribute groups are enabled for
Tivoli Data Warehousing. Enormous amounts of data can be collected
between two large IBM Tivoli Monitoring installations. Best practice design is
critical to ensure a stable, scalable environment.

32 Tivoli Management Services Warehouse and Reporting

A flexible feature that is required in the huge installation is the ability to configure
multiple TEP instances in a single TEP desktop client. If a single TEP desktop
client has to connect to a separate autonomous IBM Tivoli Monitoring
installation, instances are created to associate the unique Tivoli Enterprise Portal
Server connection information.

2.3 Firewall considerations

In most IBM Tivoli Monitoring and IBM Tivoli Data Warehouse implementations,
firewalls can play an important role throughout the architecture. For a successful
implementation, it is important to understand the component communication
flow. The configuration to support IBM Tivoli Monitoring and Tivoli Data
Warehouse within firewalls is further discussed in the following section.

Communications protocol selection
If you install IBM Tivoli Monitoring and Tivoli Data Warehouse components
across firewalls, the recommendation is to configure the IP.PIPE (Transmission
Control Protocol (TCP) communication) protocol. The IP (User Datagram
Protocol (UDP) communication) protocol is insufficient for firewall configurations.
The connectionless UDP protocol requires the opening up of multiple ports

Note: There can be only one Summarization and Pruning agent for a single
Tivoli Data Warehouse. Because the Summarization and Pruning agent
requires connections to a Tivoli Enterprise Monitoring Server, one of the
monitoring installations must be logically designated as the master. This is not
a programmatic assignment, but a logical identification for configuration and
management of the Summarization and Pruning agent. For more details about
configuring, see 2.10, “Tivoli Summarization and Pruning agent” on page 103.

Important: Enhanced firewall functionality has been added through the use of
a gateway feature in post general availability (GA) fix packs. For information
about this function, see the Firewall Gateway Feature documented in the
IBM Tivoli Monitoring information center:

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?to
c=/com.ibm.itm.doc/toc.xml

Tip: See IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407, for
expert advice about firewall scenarios. This book has several excellent
examples using firewalls.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 33

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/com.ibm.itm.doc/toc.xml

across firewalls to allow multiple connections from each individual IBM Tivoli
Monitoring component. For example, a Tivoli Enterprise Monitoring Agent
communicating to the Tivoli Enterprise Monitoring Server using IP (UDP
communication) protocol requires multiple ports to operate properly. Also, using
the IP.PIPE (TCP communication) enables the Ephemeral pipe operation
automatically if certain conditions match.

The IP.PIPE protocol has some notable limitations:

� Only 16 IBM Tivoli Monitoring processes on a single system can share the
base listening port (default port 1918) on a single network interface card when
using the protocol. Any process that is more than 16 falls back to using the IP
protocol (only if configured). This is mainly a restriction when running large
numbers of Tivoli Enterprise Management Agents on one physical system. It
is not a limitation for the total amount of Tivoli Enterprise Monitoring Agents
connecting to one Tivoli Enterprise Monitoring Server. This might occur only
when a system is required to run more than 16 Universal Agents or has more
than 16 Database Agent instances. If firewall restrictions force the use of the
IP.PIPE protocol, the only workaround is to move excess Tivoli Enterprise
Management Agents more than 16 to another system.

� The Tivoli Enterprise Monitoring Server might run out of sockets (listen
threads). The Tivoli Enterprise Monitoring Server log shows evidence of this:

message KDSMA010 – Communication did not succeed.

If this occurs, you must increase the number of sockets by changing the
setting of KDS_NCSLISTEN. The maximum value that can be set is 256.

Table 2-4 depicts the default listening ports for the IBM Tivoli Monitoring
components. Use Table 2-4 as a quick reference to understand the standard
ports for an installation. Although modifying these default values is supported, we
recommend that you do not modify it.

Table 2-4 Default port usage for IBM Tivoli Monitoring

Note: When IP.PIPE is specified as your communications protocol, you might
still see other ports being used in communication traces and logs, but these
ports are virtual and multiplexed over the default IP.PIPE port.

IBM Tivoli Monitoring component Listening port

Tivoli Enterprise Monitoring Server (IP.PIPE) 1918/tcp

Tivoli Enterprise Monitoring Server (IP.SPIPE) 3660/tcp

Tivoli Enterprise Monitoring Server (IP) 1918/udp

34 Tivoli Management Services Warehouse and Reporting

Using IP.PIPE enables some well-known ports to be open through the firewall.
Use Example 2-1 to calculate which port to open. If the firewall is not using
network address translation (NAT), the computation is sufficient to have the
components connect through the firewall.

Every system that has IBM Tivoli Monitoring installed automatically reserves the
well-known port (default 1918) for the Tivoli Enterprise Monitoring Server
communication. No matter what order the components start up on a system that
has several IBM Tivoli Monitoring components installed, the default well-known
port is only used by the Tivoli Enterprise Monitoring Server.

For all components other than the Tivoli Enterprise Monitoring Server, the
calculation in Example 2-1 is used internally by IBM Tivoli Monitoring to reserve
the listening ports.

Example 2-1 IBM Tivoli Monitoring algorithm to calculate listening port

"reserved port" = well-known port + (N*4096)
where:
N= startup sequence

For example, the IBM Tivoli Monitoring component startup on the system Izmir
follows this sequence:

1. The Universal Agent starts first: port 6014 (1918 + 1*4096)

2. The remote Tivoli Enterprise Monitoring Server starts second: port 1918
(always reserved for Tivoli Enterprise Monitoring Server)

Tivoli Enterprise Portal Server 1920/tcp
15001/tcp

Tivoli Enterprise Console 5529/tcp

Warehouse Proxy agent 6014/tcp

Tip: Do not deviate from the default listening ports without a valid reason,
even though this is supported. Listening port modification was not tested by
IBM Tivoli Software Group.

Note: The default well-known port is 1918. Any well-known port can be
configured, if the entire environment matches this port number.

IBM Tivoli Monitoring component Listening port

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 35

3. The Windows Operating System Agent starts third: port 10110 (1918 +
2*4096)

4. The Warehousing Proxy starts fourth: port 14206 (1918 + 3*4096)

Not all communication is through the firewall
Using the calculation from Example 2-1, it is now possible to control the port
usage on individual systems. Additionally, using two parameters in the
KDC_FAMILIES environment variable enables even finer control than the startup
sequence method. Ideally, all components that require access through the
firewall must use the lower-number ports, and components that do not cross the
firewall use higher-number ports.

This is accomplished by specifying the SKIP and COUNT parameters on the
KDC_FAMILIES environment variable for the individual IBM Tivoli Monitoring
component. (See Example 2-2.)

For example:

KDC_FAMILIES=IP.PIPE COUNT:1 PORT:1918 IP use:n SNA use:n IP.SPIPE
use:n

� The COUNT parameter (coded as COUNT:N where N is an integer that
indicates which port to reserve) for the components that require access
across a firewall. If the process is unable to bind to the highest port with
reference to N, it immediately fails to start up.

� The SKIP parameter (coded as SKIP:N where N is an integer that indicates
which port to reserve +1) for the components that do not require access
across a firewall. If the process is unable to bind to the port with reference to
N, it keeps trying to use the algorithm until all available ports are exhausted.

Example 2-2 Example for KDC_FAMILIES=IP.PIPE COUNT

The system Izmir has installed:
-Tivoli Enterprise Monitoring Server
-Windows OS Agent
-Warehousing Proxy agent

The well-known port is the default port 1918.
The Tivoli Enterprise Monitoring Server always uses port 1918.
The Windows OS agent does not require firewall access and should be
coded with KDC_FAMILIES=IP.PIPE SKIP:2 (port 10110).
If the Windows OS agent fails to open port 10110, it will try SKIP:3
attempting to bind now to port 10370. A failure will result in trying
SKIP:4 continuing to exhaust all possibilities with any subsequent
failures.

36 Tivoli Management Services Warehouse and Reporting

The Warehouse Proxy does require firewall access and should coded with
KDC_FAMILIES=IP.PIPE COUNT:1 (port 6014).
If the Warehouse Proxy fails to open port 6014, start up fails.

Multiple network interface cards
Whenever an IBM Tivoli Monitoring component starts up, by default it discovers
all available network interfaces on the system and actively uses them. This might
not always produce the required results. For example, consider a Tivoli
Enterprise Monitoring Server with two network interface cards (NIC): One
interface connected to the main production network and a second interface
connected to a limited network that is used only for server backup.

When a Tivoli Enterprise Monitoring Agent on another system starts up and
makes the first connection to the Tivoli Enterprise Monitoring Server using the
Global Location Broker, it connects to the Tivoli Enterprise Monitoring Server first
interface. Additionally, assume that the Tivoli Enterprise Monitoring Agent does
not have an interface connected to the limited backup network segment. The
Tivoli Enterprise Monitoring Server sends a reply to the Tivoli Enterprise
Monitoring Agent that contains the network address on which the Tivoli
Enterprise Monitoring Server wants the Tivoli Enterprise Monitoring Agent to
connect. This network address might be the NIC that is connected to the backup
network. This results in the Tivoli Enterprise Monitoring Agent not being able to
connect successfully even though the initial handshake succeeded.

To avoid this problem, you can specify an environment parameter on all of the
IBM Tivoli Monitoring components to force it to use a specific network interface
rather then using any available ones. You can accomplish this by passing either
of these keywords:

� KDCB0_HOSTNAME: You can specify either the host name, corresponding
to the NIC to be used, or its IP address in dotted decimal format. If specified,
it will take priority over the KDEB_INTERFACELIST parameter. Use
KDCB0_HOSTNAME only in an environment without NAT, because it also
inactivates the use of the Ephemeral Pipe.

� KDEB_INTERFACELIST: Specify the NIC as dotted decimal IP addresses.
This keyword is recommended when IBM Tivoli Monitoring is installed in an
environment with NAT.

Regardless, this technique is still a good practice to ensure that the Tivoli
Enterprise Management Agents connect to the proper Tivoli Enterprise
Monitoring Server interface.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 37

Installations with firewalls
The best practice with Tivoli Enterprise Management Agents on the less secure
zone of the firewall is to deploy a remote Tivoli Enterprise Monitoring Server on
the same firewall side. This enables all Tivoli Enterprise Monitoring Agents to
connect to the remote Tivoli Enterprise Monitoring Server and have only the
remote Tivoli Enterprise Monitoring Server connect through the firewall. This
minimizes the number of systems that require firewall access and keeps port
restrictions in place. See Figure 2-6 on page 40 and Figure 2-7 on page 41 for a
visual diagram.

Special cases
� Firewall with NAT: Ephemeral Pipe

Today, many firewall implementations include NAT, which further protects the
systems behind the firewall by making them invisible using a different set of
IP addresses. If the configuration includes a firewall with NAT, the easiest
way to configure Tivoli Enterprise Monitoring Agent, Tivoli Enterprise Portal
Server, or Tivoli Enterprise Monitoring Server to connect to another Tivoli
Enterprise Monitoring Server is the Ephemeral Pipe. When an Ephemeral
Pipe is active, it acts as a virtual tunnel that funnels all connections between
two components through one single port. The Ephemeral Pipe is not explicitly
started when using the standard installation scripts or tools, but is activated
by default under following conditions:

– KDC_PARTITION definition file is not present; if KDC_PARTITION is
used, it inactivates the Ephemeral Pipe.

– KDCB0_HOSTNAME parameter must not be specified; instead use the
KDEB_INTERFACELIST variable.

– The initial communication must come from the agents, not by the Tivoli
Enterprise Monitoring Server. Older configurations might still have a
KDSSTART LBDAEMON command for the Location Broker at the Tivoli
Enterprise Monitoring Server. Remove this command to activate the
Ephemeral Pipe.

If these conditions are met, the Tivoli Enterprise Monitoring Agent to Tivoli
Enterprise Monitoring Server communication automatically tries to create an
Ephemeral Pipe connection and no further configuration actions are required.
The main advantage of using Ephemeral Pipe is that no special configuration
is required, therefore you do not have to manually update the configuration
parameters at possibly hundreds of Tivoli Enterprise Monitoring Agents that
run outside of the firewall.

You can explicitly configure the Ephemeral Pipe by setting this parameter:

KDC_FAMILIES=IP.PIPE PORT 1928 EPHEMERAL:Y

38 Tivoli Management Services Warehouse and Reporting

This forces the client to use outbound ephemeral connections. Use this kind
of configuration if you encounter duplicate pipe setup failure messages in
the Tivoli Enterprise Monitoring Server log. This occurs if you run multiple
agents on the same system as the Tivoli Enterprise Monitoring Server and all
connect to that particular Tivoli Enterprise Monitoring Server using the same
pipe. In this case, EPHEMERAL:Y forces the agents to use the Ephemeral Pipe.

Although, Ephemeral Pipe is the first choice for firewall environments with
NAT, it might not communicate successfully across firewalls in all
environments. If communication failures occur between the Tivoli Enterprise
Monitoring Agent and the Tivoli Enterprise Monitoring Server, a more detailed
communications trace is required. Set the KDC_DEBUG=Y variable to
generate the required level of detail trace.

If the output of the KDC_DEBUG=Y trace contains IP addresses with 0.0.0.0,
this indicates the correct use of Ephemeral Pipe. However, if communications
are still failing, you have to use the alternative technique that requires
partition definitions. This can happen if the connections between Tivoli
Enterprise Monitoring Agent and Tivoli Enterprise Monitoring Server have to
cross multiple firewalls or if NAT has been set up without using generic
patterns.

� Firewall with NAT: Partitioning

If Ephemeral Pipe fails to establish a connection between the agents and the
hub Tivoli Enterprise Monitoring Server, the only alternative with this IBM
Tivoli Monitoring release is to use partition files. This is fully documented in
the IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407.

Large installation with firewall architectures
Keep in mind that security guidelines in a specific environment might be inflexible
when dealing with the location of some of the IBM Tivoli Monitoring components.
Accurate comprehension of the communication flows and ports enables any
installation to be customized to meet the underlying security policies.

The following recommended architectures provide visual guidance in
understanding the communication flow among the IBM Tivoli Monitoring
components. Mastery of IBM Tivoli Monitoring communication protocol provides
the architect control over the entire network topology. We now describe two
common designs.

Warehouse Proxy agent in less secure zone
This scenario is based on less-restrictive firewall rules concerning the traffic flow
for the historical data collection. In this scenario, the Warehouse Proxy agent is
located in the less secure zone. Figure 2-6 depicts one recommended
architecture for an IBM Tivoli Monitoring installation with firewall restrictions
enabled and with the Warehouse Proxy agent located in the less secure zone.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 39

Figure 2-6 Warehouse Proxy agent in less secure zone

This scenario keeps the Tivoli Enterprise Monitoring Agent warehousing traffic
on the same side of the firewall, and the database repository on the more secure
side. It is not necessary to keep track of the Warehouse Proxy agent listening
port for firewall rules. Open a specific port on the firewall to enable the
Warehouse Proxy agent to perform an Open Database Connectivity (ODBC)
connection to the Tivoli Data Warehouse on the more secure side.

The port for the ODBC connection is unique to each relational database
management system (RDBMS). Consult the database product manuals or your
local database administrator.

Warehouse Proxy agent in more secure zone
In this second scenario, the firewall restrictions are expanded to prevent any
warehousing traffic on the less secure side of the firewall. Figure 2-7 depicts the
recommended architecture for an IBM Tivoli Monitoring installation with firewall
restrictions increased, and the Warehouse Proxy agent located in the more
secure zone.

Note: When the Warehouse Proxy agent is on AIX or Linux, the JDBC
interface is used.

40 Tivoli Management Services Warehouse and Reporting

Figure 2-7 Warehouse Proxy agent in more secure zone

This scenario forces the Tivoli Enterprise Monitoring Agent to warehouse traffic
through the firewall. The Warehouse Proxy agent and the Tivoli Data Warehouse
repository are both located in the more secure zone. This design increases the
complexity for the Warehouse Proxy agent, but it also increases the security of
the warehouse data.

To open the proper ports so that the Tivoli Enterprise Monitoring Agent can
warehouse the historical data through the firewall, the Warehouse Proxy agent
must establish a well-known listening port. This well-known port is calculated
through the KDC_FAMILIES mechanism.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 41

When warehousing data in a large installation especially within the boundaries of
firewalls, note the following tips:

� Accurately calculate the collection amount of historical data. Firewall traffic
can increase excessively when historical data collection is enabled.

� Only collect the critical attribute groups and be careful not to turn on
unnecessary attribute groups.

� Historical data rollup can be stored on the remote Tivoli Enterprise Monitoring
Server. However, it is severely limited to 250 Tivoli Enterprise Monitoring
Agents per remote Tivoli Enterprise Monitoring Server.

� Windows has a limit of a maximum 2,000 sockets open simultaneously.
Within a firewall environment, IP.PIPE is required. 500 sockets are reserved
for internal processing, therefore if you want to use warehousing of historical
data for more than 1,500 Tivoli Enterprise Monitoring Agents, you have to use
more than one Warehouse Proxy Agent. Note that if you are using
Warehouse Proxy Agent on UNIX/Linux, you do not have that limitation. Even
if you use one UNIX/Linux Warehouse Proxy Agent, warehousing of historical
data is supported for more than 1,500 Tivoli Enterprise Monitoring Agents.

2.4 High-availability considerations

Although hardware and software is often extremely reliable, there is no
guarantee against failure, and there is certainly no absolute guarantee against
events such as a natural disaster or any other unpredictable disaster.

High availability can be of vital importance when running business and IT
intelligence applications such as Tivoli Data Warehouse and Tivoli Service Level
Advisor. Single points of failure within a system can seriously impact both
performance and availability. High availability is the term used to describe

Tip: The Warehouse Proxy agent calculated port is significant only when:

� The Tivoli Enterprise Monitoring Agents are warehousing data directly to
the Warehouse Proxy agent, instead of storing on the remote Tivoli
Enterprise Monitoring Server

� Firewall policies do not allow ODBC or JDBC connections to be made from
less secure to the more secure infrastructure, and the Warehouse Proxy
agent must be located behind the firewall from the agents

� The Tivoli Enterprise Monitoring Agent must go through a firewall to
connect to the Warehouse Proxy agent

42 Tivoli Management Services Warehouse and Reporting

systems that run and are available to clients more or less all the time. High
availability means different things to different people.

In some cases, high availability means provision of more or less instantaneous
cutover facilities and continuing on standby hardware and software as though the
original failure had never occurred. In other cases, high availability means
possibly up to 30 minutes outage and continuing as before, which can be
handled by provision of standby machines that can take over the work of the
failing machine after some handover process of both hardware and software.
This has the important attribute of experiencing no degradation in performance.

In many cases, high availability in a warehousing environment means that users
can put up with a small loss of availability and also accept a degraded service
until things are corrected completely. This can be achieved by making provision
for what is called mutual takeover, whereby a machine with existing work on it
can take on the extra work of all or part of the failing machine until such time as
things are repaired completely.

For high availability to occur:

� Transactions must be processed efficiently, without appreciable performance
degradations (or even loss of availability) during peak operating periods

� Systems must be able to recover quickly when hardware or software failures
occur, or when disaster strikes

� Software that powers the Tivoli Data Warehouse database must be
continuously running and available for transaction processing

2.4.1 Tivoli Data Warehouse failure behavior

In a typical Tivoli Data Warehouse scenario, there are a number of machines or
systems performing a role, for example:

� The Tivoli Data Warehouse server that holds the target database

� The source monitoring agents from which the detailed data is extracted

� The Warehouse Proxy agent that loads the detailed data into the Tivoli Data
Warehouse database

If the Tivoli Data Warehouse server fails or is not able to be written to, the
Warehouse Proxy agent continues to attempt to write detailed data to the
database. This behavior continues until the database becomes available. The
data on the agent is not pruned by the Warehouse Proxy agent, because it has
not performed any successful writes to the Tivoli Data Warehouse. This behavior
is further explained in 2.9.1, “Tivoli Warehouse Proxy internals” on page 95.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 43

There are limitations on this behavior although these are mostly related to the
agent. The agent has the ability to store its collected detailed data on its own
physical media. If the data is not pruned by the Warehouse Proxy agent due to
disconnection, it can be stored for an infinite amount of time. Because the
Warehouse Proxy is not able to write the data to the warehouse, the data stays
local to the machine and is not removed until a successful warehouse write has
been achieved by the Warehouse Proxy agent. In cases where many groups are
configured for collection at short intervals, this can cause a large data transfer
when the Tivoli Data Warehouse or Warehouse Proxy agent comes back online.
In some cases, this is highly undesirable because it is not really throttled at any
level and a spike in warehousing and processing activity can be expected.

The warehouse is obviously not able to report historical data to the Tivoli
Enterprise Portal Server and its users while it is in a failed or disconnected state.
A detailed data query can be run on the Tivoli Enterprise Portal Server. The
reason for this is that this detailed data is queried directly from the agent if the
warehouse is unavailable. This is a maximum of 24 hours if the Warehouse
Proxy agent is able to write to the warehouse effectively, because it always
prunes to the last 24 hours of data. An aggregated, summarized query cannot be
run, therefore no aggregated or summarized historical views work in the Tivoli
Enterprise Portal Server. If the agent process has to stop, there can be no
collection of raw metric data on the agent because it is not operational.

2.4.2 Recommendations

When you start to plan and design your Tivoli Data Warehouse system, the main
recommendations are:

� Take time to brainstorm a list of possible failure scenarios.

� Agree upon their degree of criticality to your environment, and then decide
which scenarios must be accommodated in your system.

� Document what action must be taken for each of the important scenarios, if
they occur.

Consider the following technologies when you plan for high availability for your
Tivoli Data Warehouse infrastructure.

Important: The current monitoring agent process terminates after five days, if
it has no connection to a Tivoli Enterprise Monitoring Server for the duration of
this period. Keep this in mind when you consider high-availability scenarios.

44 Tivoli Management Services Warehouse and Reporting

Clustering and failover support
You can achieve failover protection by keeping a copy of your database on
another machine that is perpetually rolling the log files forward. With this
approach, the primary database is restored to the standby machine using a
database restore utility or the split mirror function.

The secondary database on the standby machine continuously rolls the log files
forward. If the primary database fails, any remaining log files are copied over to
the standby machine. After a roll forward to the end of the logs and stop
operation, all clients are reconnected to the secondary database on the standby
machine.

You can get failover support by adding platform-specific software to your system,
for example:

� High-Availability Cluster Multi-Processing (HACMP™), Enhanced Scalability,
for AIX

� Microsoft Cluster Server (MSCS), for Windows NT® or Windows 2000

� Sun™ Cluster, or VERITAS Cluster Server, for the Solaris operating
environment

� Multi-Computer or ServiceGuard, for Hewlett-Packard

� Steeleye or Mission Critical Linux for Linux

Failover strategies are usually based on clusters of systems. A cluster is a group
of connected systems that work together as a single system. Each processor is
known as a node within the cluster. When failures occur, clustering allows servers
to back each other up by picking up the workload of the failed server (Figure 2-8).

Figure 2-8 Clusters overview

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 45

IP address takeover (or IP takeover) is the ability to transfer a server IP address
from one machine to another when a server goes down; to a client application,
the two machines appear at different times to be the same server.

Failover software might use heartbeat monitoring or keepalive packets between
systems to confirm availability. Heartbeat monitoring involves system services
that maintain constant communication between all the nodes in a cluster. If a
heartbeat is not detected, failover to a backup system starts. Users are usually
not aware that a system has failed. There are two common failover strategies on
the market known as idle standby and mutual takeover.

Idle standby
In this configuration, one system is used to run a database instance, and the
second system is idle, or in standby mode, ready to take over the instance if
there is an operating system or hardware failure involving the first system.
Overall system performance is not impacted, because the standby system is idle
until required.

Figure 2-9 shows an idle standby example. The cluster includes all four nodes
and one node is kept idle, standing by to take over the workload of any node that
fails. Although this configuration is more costly, it does have the advantage that
there is no performance degradation after failover of one machine at a time.

Figure 2-9 Idle standby

46 Tivoli Management Services Warehouse and Reporting

Mutual takeover
In this configuration, each system is the designated backup for another system.
Overall system performance might be impacted, because the backup system
must do extra work following a failover: It must do its own work plus the work that
was being done by the failed system.

Figure 2-10 shows an example of a partitioned database consisting of four
database partitions, each running on a separate server. The server hardware
consists of four nodes connected with a high-speed network. Additional cluster
software such as HACMP on AIX or MSCS on Windows is installed. The four
nodes are separated into two pairs. Each pair is defined as cluster to the cluster
software. Each node acts as the failover server for the other node in the same
cluster.

Figure 2-10 Mutual takeover

The mutual takeover configuration means that a failure results in that node’s
partition being recovered and its workload being taken over from the other node
in a cluster that is already running a workload. The cluster software typically
allows the invocation of failover scripts when failover occurs. You can use these
scripts to adjust various operating parameters when a failover or failback occurs.
For example, use the failover scripts to shrink the buffer pools of both the
affected logical partitions when a failover occurs, and restore them to normal on
failback.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 47

High availability of media
In this section, we look at various techniques that you can exploit to keep your
data warehouse or data marts highly available by minimizing the chances of
media failure (such as disk failure) and the time to recover from such failures.

Disk failure is one of the most commonly experienced problems. For example, if
the warehouse system has 100 physical drives, have you estimated with what
frequency you might expect some kind of disk failures? Careful planning and
understanding of all the things that can go wrong can protect you from losing
information.

Disk mirroring
Disk mirroring is a useful technique for maximizing the availability of your
database. Mirroring is the process of writing the same data to multiple storage
devices at the same time. This is done either sequentially, when data is only
written to the mirror when the master write is successful. It is also done in
parallel, when both master and mirror writes occur at the same time. The first
method is slower but you are more likely to have at least one good copy of the
data if a failure occurs. When reading from a mirrored logical volume, the
operating system (OS) reads from either the master or the mirror, whichever is
quicker at the time. If a media failure occurs, operations are automatically
switched to the good copy and the OS marks the faulty copy as stale. Users can
use mirroring to continue working even though a media failure has occurred.

Mirroring can be implemented in either software or hardware. However, mirroring
does not remove the need to back up databases. For example, you cannot use
disk mirroring to restore a table that has been lost or damaged as a result of user
error. Additionally, although disk mirroring dramatically reduces the impact of
media failures, there is still a risk of damage to both sides of the mirror.

If a database is held on one set of physical volumes, and a mirror image of the
same database is maintained on a separate set of physical volumes, it is
possible for both sets of physical volumes to be damaged or destroyed. This can
happen as a result of a disaster or it can be just bad luck. In such instances, it is
necessary to recover the database from backup copies.

RAID technology
RAID stands for Redundant Array of Independent Disks, and provides a method
of classifying the different ways of using multiple disks to increase availability and
performance. RAID can eliminate or minimize the chance of unavailability of the
critical warehouse resources such as target database tables and logs by allowing
operation to continue in the degraded mode when a disk failure occurs.

48 Tivoli Management Services Warehouse and Reporting

Disk arrays and RAID are hardware solutions to improve some or all of the
following disk characteristics:

� Performance: Operating multiple disks in parallel can boost input/output (I/O)
performance.

� Size: Instead of engineering expensive large disks, replace them with a
number of small disks that together work like a large disk.

� Reliability: Using either mirroring or parity information allows operation to
continue in the degraded mode, even in the event of a single disk failure.

� Variety: Disk arrays come in a large variety of configurations with various
number of tunable alternatives.

The original RAID classification described five levels of RAID (RAID-1 through
RAID-5). RAID-0 (data-striping), RAID-1 Enhanced (data stripe mirroring), and
Orthogonal RAID-5 (which includes extra redundancy of components such as
disk adapters) have been added to these. RAID-0 is not a pure RAID type,
because it does not provide any redundancy.

Different designs of arrays perform optimally in different environments. The two
main environments are those where a high I/O rate is required, that is:

� High transfer rates are important

� High I/O rates are required, that is, for applications requesting short length
random records

Table 2-5 shows the RAID array classifications.

Table 2-5 RAID classifications

In this section, we describe RAID-0, RAID-1, and RAID-5 and their functions.

RAID level Description

RAID-0 Block Interleave Data Striping without Parity

RAID-1 Disk Mirroring/Duplexing

RAID-1 Enhanced Data Strip Mirroring

RAID-2 Bit Interleave Data Striping with Hamming Code

RAID-3 Bit Interleave Data Striping with Parity Check

RAID-4 Block Interleave Data Striping with One Parity Disk

RAID-5 Block Interleave Data Striping with Skewed Parity

Orthogonal RAID-5 RAID-5 with Additional Redundancy (such as disk adapters)

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 49

RAID-0 is the data organization term used when striping data across multiple
disk drives, without parity protection. Data striping improves performance with
large files, since reads/writes are overlapped across all disks. However, reliability
is decreased, as the failure of one disk can result in a complete failure of the
disks.

RAID-1 is the term used with disk mirroring or duplexing at the hardware level.
Whenever the computer makes an update to a disk, it can arrange to duplicate
that update to a second disk, thus mirroring the original. This level of RAID is
implemented in local area network (LAN) Server fault tolerance. Either of the
disks can fail, and the data is still accessible. Additionally, because there are two
disks, a read request can be serviced from either disk, thus leading to improved
throughput and performance on the disk subsystem. However, the downside is
the cost of using 50% of disk storage space for mirroring.

In the case of the IBM RAID controller, there are two separate disk Small
Computer System Interface (SCSI) channels available from one card and
therefore duplexing is possible from one disk controller card. Some might not
consider this as true duplexing but as mirroring on separate disk control
channels. In any case, the IBM RAID controller provides an extremely
cost-effective and adaptable method for arranging data on a disk subsystem
using RAID-1.

RAID-5 is the term used when striping data across three or more disks with
skewed parity. This means that the data organization is essentially the same as
RAID-0, but there is an additional element of parity checking. The parity checking
is used to encode the data and guard it against loss, and is referred to as a
checksum, disk parity, or error correction code (ECC). The principle is the same
as memory parity, where the data is guarded against the loss of a single bit of
data. In RAID-5, the parity information is stored on the disk array to guard against
data loss, and skewing is used to remove the bottleneck that is created by having
all the parity information stored on a single drive.

Using RAID technology to provide striping of data across multiple disks often
improves performance, and enhances data integrity in an environment where
data is predominantly read off the disk without a subsequent update (write).

Table 2-6 summarizes the RAID performance characteristics.

Table 2-6 Summary of RAID performance characteristics

RAID level Capacity Large
transfers

High I/O
rate

Data
availability

Single Disk Fixed (100%) Good Good

RAID-0 Excellent Very Good Very Good Poor

50 Tivoli Management Services Warehouse and Reporting

Disk arrays
The capacity of single large disks has grown rapidly, but the performance
improvements have been modest, when compared to the advances made in the
other subsystems that make up a computer system. The reason is that disks are
mechanical devices and are affected by delays in seeks and the rotation time of
the media.

In addition, disks are often among the least reliable components of the computer
systems. However, the failure of a disk can result in the unrecoverable loss of
vital business data or the need to restore a tape backup with consequent delays.
The use of arrays of inexpensive disks can offer a solution to these concerns.

It is usual to connect several disks to a computer to increase the amount of
storage. Mainframes and minicomputers have always had banks of disks. The
disk subsystem is called a disk array when several disks are connected and
accessed by the disk controller in predetermined patterns designed to optimize
performance, reliability, or both. The driving force behind disk array technology is
the observation that it is cheaper to provide a given storage capacity or data rate
with several small disks connected together than with a single disk.

Split mirror
A backup always degrades the performance of the production system. Especially
if the warehouse database is big or in a 24x7 hour environment, it is hard to find
a time frame to plan the backup so that it does not interfere with the normal
operation. To free the production system from the overhead of backup, a copy or
mirror of the database can be helpful if it is available for backup, report, or other
purposes.

Some intelligent storage servers such as IBM Enterprise Storage Server® (ESS)
support the split mirror feature. For example, the IBM FlashCopy® is the ESS’s
implementation of the split mirror feature. Split mirror means that identical and
independent copies of disk volumes can be established within those storage
servers. These copies can usually be established in a short time (for example,
5 seconds to 20 seconds, depending on the device).

RAID-1 Moderate (50%) Good Good Good

RAID-5 Very Good Very Good Good Good

Orthogonal RAID-5 Very Good Very Good Good Very Good

RAID level Capacity Large
transfers

High I/O
rate

Data
availability

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 51

If the database resides on a storage server that supports the split mirror feature,
a copy of the disk volumes can be established and assigned to another (backup)
machine. On the backup machine, the (backup) database can then be accessed
exclusively for backup or other purposes without reference to users. You can use
split mirror to establish an identical and independent copy of a disk volume. The
source and target volumes must reside on the storage server.

2.5 Historical data collection architecture

There are two types of data stores for the IBM Tivoli Monitoring 6.1 historical
data component:

� Short-term data
� Long-term data

Short-term data
Short-term data is typically referred to in IBM Tivoli Monitoring 6.1 as data that is
stored in binary files and is less than 24 hours old.

In the IBM Tivoli Monitoring 6.1 architecture, short-term data can be configured
to store the binary files locally on the Tivoli Enterprise Management Agent, or it
can be configured to store the binary files on the Tivoli Enterprise Monitoring
Server. This can be configured by a user by agent type. In both cases, the binary
data is considered short term because it is only designed for 24-hour access.

Note: It is stored in partitioned data set (PDS) on IBM z/OS® systems.

52 Tivoli Management Services Warehouse and Reporting

When the short-term data is successfully loaded into the Tivoli Data Warehouse
V2.1 using the Warehouse Proxy agent, it is pruned on Tivoli Enterprise
Monitoring Agent or Tivoli Enterprise Monitoring Server if it is older than 24
hours. If the Warehouse Proxy agent is not configured to collect the short-term
data, then a user-defined pruning job must be implemented. At the time of writing
this book, and unless otherwise specified by the specific agent, the
recommendation was that the location for the binary short-term data must be on
the Tivoli Enterprise Monitoring Agent. The binary short-term data can never be
in aggregate or summarized format regardless of whether it is stored on the
Tivoli Enterprise Monitoring Agent or the Tivoli Enterprise Monitoring Server.

Long-term data
Long-term data in IBM Tivoli Monitoring 6.1 is typically referred to as data that is
older than 24 hours and has been collected up to the Tivoli Data
Warehouse V2.1 RDBMS using the Warehouse Proxy agent. The long-term data

Note: This short-term data can be pruned by the IRA framework (see “IRA
communication framework” on page 96 for more information) when the data is
stored on the Tivoli Enterprise Monitoring Agent or by the Tivoli Enterprise
Monitoring Server framework when the data is stored on the Tivoli Enterprise
Monitoring Server.

When history data is stored on a z/OS agent or z/OS Tivoli Enterprise
Monitoring Server, the PDS facility does not handle its data the same way as
the distributed products do. History data is not explicitly deleted from the
PDSs based on a time interval like the distributed short-term history files. The
z/OS PDS facility relies on its own set of maintenance procedures to maintain
the PDS history data sets. These PDSs maintenance procedures are invoked
whenever the currently active PDS is full. The procedures switch to the next
available PDS, so that there will always be one remaining empty data set.

History data is deleted from the PDSs when there are no more empty data
sets remaining. The last full data set is wiped out, therefore it will be the new
empty data set. Thus the amount of z/OS data remaining is dependent on the
size of the PDSs for that product, and the amount of data being collected.

It is not possible for multiple z/OS agents to share the same runtime
environment and PDSs. Each z/OS agent instance must have its own runtime
PDSs and cannot share with other agent instances. You can run many
different z/OS agent products in the same run time and address space (for
example, Customer Information Control System (CICS), DB2, OS390, MQ
agents), but they will all have their own individual PDSs defined for their
usage.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 53

resides in tables in the Tivoli Data Warehouse V2.1 database. The long-term
RDBMS tables contain detailed data and summarized data in the Tivoli Data
Warehouse V2.1. The Summarization and Pruning agent can be configured to
run every day to roll up data from the detailed level to hourly, to weekly, to
monthly, to quarterly, and to yearly level. The Summarization and Pruning agent
also prunes the detailed data and summarized data, as shown in Figure 2-11.

Figure 2-11 Historical data types

2.5.1 Component flows

When historical data collection is configured in IBM Tivoli Monitoring 6.1, a user
can determine whether the short-term data (the binary 24-hour data) must be
stored on the Tivoli Enterprise Monitoring Server or on the Tivoli Enterprise
Monitoring Agent. If the data is stored on the Tivoli Enterprise Monitoring Agent,
then each monitored machine stores binary files for all of the monitoring agents
running on that system. At the time of writing this book, collecting historical data
on the Tivoli Enterprise Monitoring Server for large-scale clients was not
recommended.

In some cases, it might be necessary to collect short-term historical data on the
Tivoli Enterprise Monitoring Server. Some agents require this configuration. It
might also be necessary if there are firewall considerations. If the short-term
historical data collection is configured to collect on the Tivoli Enterprise
Monitoring Server, the binary files for all monitored machines and their agents
are collected up to the Tivoli Enterprise Monitoring Server. This creates a single

54 Tivoli Management Services Warehouse and Reporting

binary file for each type of monitoring attribute group for all machines and can
become a single point of failure and cause reporting queries to run for a long
time.

When the Warehouse Proxy agent is installed and configured, data is loaded
from the Tivoli Enterprise Monitoring Agent or Tivoli Enterprise Monitoring Server
(depending on the location setting) to the Tivoli Data Warehouse V2.1 RDBMS.
When data is collected to the Warehouse Proxy agent, tables are created in the
Tivoli Data Warehouse V2.1 database. When the historical collection is
configured, a user can specify how often to prune the detailed data. The default
is seven days. After the detailed data has been loaded into the Tivoli Data
Warehouse V2.1 tables, data older than 24 hours is pruned from the short-term
binary files located on the Tivoli Enterprise Monitoring Agent or Tivoli Enterprise
Monitoring Server. At any given time, you can have 24 hours of short-term
detailed data on the Tivoli Enterprise Monitoring Agent or Tivoli Enterprise
Monitoring Server and detailed tables in the Tivoli Data Warehouse RDBMS that
contains the same data. When a request is made from the Tivoli Enterprise
Portal (TEP) to perform a query that uses the timespan function, data is retrieved
from the binary file if the timespan is less than or equal to 24 hours. A query
performed from the TEP that uses a timespan greater than 24 hours retrieves
data from the Tivoli Data Warehouse V2.1 tables.

Important:

� The most recent 24 hours’ worth of data comes from a binary file that is
stored at the agent or at the Tivoli Enterprise Monitoring Server. Beyond
24 hours, the data is retrieved from the Tivoli Data Warehouse. The Tivoli
Enterprise Portal Server determines where to get the data: Either from the
agent if the data is less than 24 hours old, or from the Tivoli Data
Warehouse if the data is older than 24 hours. If the query goes to an agent
and retrieves a large amount of data, it can consume a large amount of
CPU and memory. You can experience low system performance while a
large amount of data is retrieved from the agents.

� It is also important to note that if the Warehouse Proxy agent cannot insert
the data requested by the agent or the Tivoli Enterprise Portal Server, the
data will be kept on the Tivoli Enterprise Monitoring Agent or on the Tivoli
Enterprise Portal Server in the binary file. This means that in bad
conditions the short-term history file can contain more than 24 hours of
data. Also, there is no limit in the size of this file and it can grow indefinitely
if the Warehouse Proxy agent keeps failing to insert the data in the
database.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 55

Figure 2-12 shows the flow of historical data collected when the location is stored
on the Tivoli Enterprise Monitoring Agent.

Figure 2-12 Historical collection location Tivoli Enterprise Monitoring Agent

TEPS

(Hub)
TEMS

TEP
Desktop

TEP
Browser

OS Agent OS
Agent

Application
Agent

Universal
Agent

This is an example of a component model
where the historical data location is

configured on the TEMA.

Warehouse
ProxyTDW 2.1

Summarization
& Pruning

Agent

Binary
Files

Binary
Files

Binary
Files

56 Tivoli Management Services Warehouse and Reporting

Figure 2-13 shows the flow of historical data that is collected when the location is
stored on the Tivoli Enterprise Monitoring Server.

Figure 2-13 Tivoli Monitoring 6.1 component model (historical collection location Tivoli
Enterprise Monitoring Server)

2.5.2 Data tables and attributes
Historical collection of data is based on attribute groups, which are defined as
groupings of attributes within a specific IBM Tivoli Monitoring 6.1 agent. For
example, the IBM Tivoli Monitoring V6.1 Monitoring Agent for Windows OS has
42 attribute groups with more than 1000 attributes. Each agent has a set of
default attribute groups defined that can be configured easily for historical
monitoring. Additional attribute groups can be configured, if required. There is a
separate user guide for each supported IBM Tivoli Monitoring 6.1 agent that
describes the agent’s attribute groups and attributes.

Note: There is one binary file per attribute group. They are also called
attribute group binary files.

TEPS

(Hub)
TEMS

TEP
Desktop

TEP
Browser

OS Agent OS
Agent

Application
Agent

Universal
Agent

This is an example of a component model
where the historical data location is

configured on the TEMS.

Warehouse
ProxyTDW 2.1

Summarization
& Pruning

Agent
Binary
Files

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 57

Table 2-7 is an example of three IBM Tivoli Monitoring V6.1 agents and their
default attribute groups.

Table 2-7 Default attribute group examples

Short-term binary tables
When historical data collection is turned on in IBM Tivoli Monitoring 6.1, the
default attribute groups can be configured to collect historical data, as described
in 3.5, “Configuring historical data collection” on page 147. After the data
collection starts, the agent starts storing short-term binary tables on the Tivoli
Enterprise Monitoring Agent or Tivoli Enterprise Monitoring Server, depending on
the collection location that is configured. For example, Table 2-8 lists the default

Agent Default attribute group

Monitoring Agent for Windows OS � Network_Interface
� NT_Processor
� NT_Logical_Disk
� NT_Memory
� NT_Physical_Disk
� NT_Server
� NT_System

Monitoring Agent for UNIX® � Disk
� System

Monitoring Agent for Linux � Linux_CPU
� Linux_CPU_Averages
� Linux_CPU_Config
� Linux_Disk
� Linux_Disk_IO
� Linux_Disk_Usage_Trends
� Linux_IO_Ext
� Linux_User_Login
� Linux_Network
� Linux_NFS_Statistics
� Linux_OS_Config
� Linux_Process
� Linux_RPC_Statistics
� Linux_Sockets_Status
� Linux_Swap_Rate
� Linux_System_Statistics
� Linux_VM_Stats

Monitoring Agent for DB2 � KUDDBASEGROUP00
� KUDDBASEGROUP01
� KUDBUFFERPOOL00
� KUDINFO00
� KUDTABSPACE

58 Tivoli Management Services Warehouse and Reporting

binary file table names of four agents. These are the names of the binary file
tables as they are displayed on the Tivoli Enterprise Monitoring Agent or Tivoli
Enterprise Monitoring Server.

Table 2-8 Short-term binary table names

Agent Binary table name

Monitoring Agent for Windows OS � NETWRKIN
� NTPROCSSR
� WTLOGCLDSK
� WTMEMORY
� WTPHYSDSK
� WTSERVER
� WTSYSTEM

Monitoring Agent for UNIX � UNIXDISK
� UNIXOS

Monitoring Agent for Linux � LNXCPU
� LNXCPUAVG
� LNXCPUCON
� LNXDISK
� LNXDSKIO
� LNXDU
� LNXIOEXT
� LNXLOGIN
� LNXNET
� LNXNFS
� LNXOSCON
� LNXPROC
� LNXRPC
� LNXSOCKS
� LNXSWPRT
� LNXSYS
� LNXVM

Monitoring Agent for DB2 � KUD3437500
� KUD3437600
� KUD4177600
� KUD4238000
� KUDTABSPC

Note: Although Linux_Process is part of the default groups, stop it
immediately after default historical group configuration, because it can collect
an enormous amount of data.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 59

Each short-term binary file table also has an HDR file. Every binary file table has
an associated HDR file (for example, NTPROCSSR.hdr). The time stamp of the
HDR file can be useful to determine the first time that data collection took place
for that attribute group. The time stamp on the table name (that is, the file without
the *.hdr) indicates the last time data collection occurred for that attribute group.
You can use the time stamps of these files for troubleshooting purposes.

The short-term binary tables are not accessed directly by a user. The binary
tables are only accessed from the TEP for queries of data less than 24 hours.
The binary tables are also in a proprietary format. Although the tables cannot be
accessed directly, it can be helpful to know the names of the tables to determine
whether short-term historical data is being collected. It is also helpful for
troubleshooting. You can find the short-term binary files in the default IBM Tivoli
Monitoring 6.1 installation directory. For example:

� For Windows:

<ITM Install dir>\tmaitm6\logs

� For a Linux agent on a Linux platform:

<ITM Install dir>/<platform abbreviation>/<product code>/hist

 <platform abbreviation> can be li6263 for Linux and <product code> is lz

� For a UNIX agent on an AIX platform:

<ITM Install dir>/<platform abbreviation>/<product code>/hist

<platform abbreviation> can be aix513 for AIX and <product code> is ux

� For a DB2 agent on an AIX platform:

<ITM Install dir>/<platform abbreviation>/<product code>/hist

<platform abbreviation> can be aix513 for AIX and <product code> is ud

Long-term RDBMS tables
At the core of the Tivoli Data Warehouse V2.1 is a single RDBMS database.
Version 2.1 supported databases are provided in 2.1.1, “Tivoli Data Warehouse
Version 2.1 supported platforms” on page 22. When an attribute group is
configured and has started historical collection of data, a set of tables is created
in the Tivoli Data Warehouse: One detailed table and multiple summarization
tables for each attribute group.

Note: The platform abbreviation varies based on product and platform support
(such as between 32-bit and 64-bit).

60 Tivoli Management Services Warehouse and Reporting

For example, if yearly, quarterly, monthly, weekly, daily, and hourly
summarization are turned on for the NT_Memory attribute group, the following
tables are created in the Tivoli Data Warehouse:

“NT_Memory” The detailed historical table for NT_Memory
“NT_Memory_H” The summarized hourly historical table for NT_Memory
“NT_Memory_D” The summarized daily historical table for NT_Memory
“NT_Memory_W” The summarized weekly historical table for NT_Memory
“NT_Memory_M” The summarized monthly historical table for NT_Memory
“NT_Memory_Q” The summarized quarterly historical table for NT_Memory
“NT_Memory_Y” The summarized yearly historical table for NT_Memory

Note: Do not forget that for raw tables to be created in the Tivoli Data
Warehouse, Warehouse Proxy agent has to be installed, configured, and
running successfully. Similarly for the summarization tables, the
Summarization and Pruning agent has to be installed, configured, running,
and scheduled. It is important to understand the division of labor of each of the
warehousing components, especially when it comes to troubleshooting.

Note: All Tivoli Data Warehouse V2.1 table names are created with quotation
marks for the table name. When referencing historical data in the Tivoli Data
Warehouse database, you must use quotation marks to ensure correct access
to that data.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 61

Figure 2-14 shows a list of the NT_Memory tables in the Tivoli Data Warehouse
as seen from the DB2 8.2 Control Center.

Figure 2-14 Example of NT_Memory detail and summarization tables

Some attribute groups collect data for single-instance attributes, and some
attribute groups collect attributes for multiple-instance attributes. The
NT_Memory attribute group is an example of a single-instance attribute group.
The NT_Memory detailed table has only one row per collection interval. The
Monitoring Agent for UNIX attribute group for disk monitoring creates a table
called Disk. The Disk attribute group collects data for UNIX file systems and is a
good example of a multiple-instance attribute group. The Disk detailed table has
multiple rows per collection interval, with a row for each file system found on the
specific agent.

62 Tivoli Management Services Warehouse and Reporting

Figure 2-15 shows an example of the UNIX Disk attribute group with collected
data in the Tivoli Data Warehouse. Note that the 1050929094542000 time stamp
has eleven file systems for that one collection (cycle).

Figure 2-15 UNIX Disk table (multiple-instance) example

Example 2-3 on page 69 shows a detailed list of the Tivoli Data Warehouse V2.1
table names and instance types.

Note: When an attribute group is configured and collection is started, all of the
definitions for that attribute group are common for all agents. In IBM Tivoli
Monitoring 6.1, you cannot filter historical collection by agents or groups of
agents. For example, if the NT_Memory attribute group is configured to collect
historical data, then all Windows OS Agents collect this attribute group. You
cannot exclude certain machines or groups of machines for historical
collection. Furthermore, all summarization and pruning definitions are in effect
for all agents that the attribute group applies to. In other words, if NT_Memory
is configured to keep seven days of detailed data, there will be seven days of
detailed data for all Windows machines that have the Windows OS Agent
deployed.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 63

Detailed tables
All of the detailed tables are based on a row-based schema. Each attribute group
that has historical data collection turned on creates its own unique table and
unique columns. Attribute values in the detailed tables store the raw values.
Figure 2-15 on page 63 shows an example of the UNIX Disk table and some of
the detailed values that are stored. All of the attribute groups and attributes are
discussed in the IBM Tivoli Monitoring 6.1 specific agent monitoring guides.
However, as we mentioned previously, there is no consistent documentation
describing the table schemas that are available with IBM Tivoli Monitoring 6.1.
One of the ways to get more information about tables and columns is discussed
in 2.5.3, “Object definitions” on page 69.

Most of the columns in the detailed tables are unique according to their specific
attribute group. However, three common columns are important to know to
understand the Tivoli Data Warehouse V2.1 architecture. They are also useful
for generating reports. These columns are:

� TMZDIFF

The TMZDIFF is the difference between the time zone where the agent is
installed and the Universal Time (GMT). This value is shown in seconds, if the
data is collected at the agent.

� WRITETIME

This is the time the record was written in the binary file. The format of this time
stamp is a 16-character value in the format cyymmddhhmmssttt, where:

– c = century
– yymmdd = year, month, day
– hhmmssttt = hours, minutes, seconds, milliseconds

� Timestamp

This the date and time that the agent collects information as set on the
monitored system. The format of this time stamp is the same 16-character
value (cyymmddhhmmssttt) used for WRITETIME.

The origin node field is another field that you must consider when working with
the Tivoli Data Warehouse V2.1 architecture. The origin node is typically the host
name of the resource and is different depending on the agent type.

Agents typically use general guidelines for the origin node field, but some agents
do not follow these guidelines. In general, the origin node is constructed as
follows (the origin node might be of this form: instance:hostname:type)

� instance is optional.

� The delimiter usually is a colon.

64 Tivoli Management Services Warehouse and Reporting

� hostname is the machine name, but it can also be a broker name (in case of
MQ Series, for instance).

� type is the node type or product such as KNT for the Windows agent, KUX for
the UNIX agent, and so on.

Here are some examples:

� Monitoring Agent for Windows OS: The attribute for the monitored server
name is Server_Name. For example:

Primary:CAIRO:NT

� Monitoring Agent for UNIX OS: The attribute for the monitored server name is
Server_Name. For example:

istanbul.itsc.austin.ibm.com:KUX

� Monitoring Agent for Linux OS: The attribute for the monitored server name is
Server_Name. For example:

istanbul.itsc.austin.ibm.com:LZ

� Monitoring Agent for DB2: The attribute for the monitored server name is
Server_Name. For example:

DB2:KLLAA9B:UD

Summarized tables
If summarization is configured for an attribute group, then additional tables that
include summarized data are created in the Tivoli Data Warehouse.
Summarization is the process of aggregating the detailed data into time-based
categories, for example, hourly, daily, weekly, quarterly, and yearly based on the
aggregation parameters. Summarizing data enables you to perform historical
analysis of the data over time. Along with summarization parameters, pruning
definitions can also be defined. The Summarization and Pruning agent creates
the summarized tables and performs the pruning process to remove old data.

The Summarization and Pruning agent can be configured to run a summarization
and running process once a day. When the Summarization and Pruning agent
process (for example, ksy610.exe on Windows) is started, it runs as a process
on the system OS (Windows, UNIX, or Linux). This process sleeps and wakes up
every 5 minutes to check whether the summarization and pruning run has been
scheduled to kick off. (The default schedule is once per day at 02:00 a.m.) If the
summarization and pruning is scheduled to run within this 5 minute interval, then
it will start the Summarization and Pruning agent scheduled run against the Tivoli
Data Warehouse V2.1 database. The summarization portion of the run is a rollup
process that aggregates data from the detailed tables to the specific
summarization time-based tables (hourly, daily, weekly, quarterly, and yearly).
The pruning portion of the run removes data from the detailed and summary

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 65

tables based on the configured pruning parameters. The default pruning
parameters are as follows:

� Seven days of detailed data
� Ninety days of hourly data
� Twelve months of daily data
� Two years of weekly data
� Three years of monthly data
� Three years of yearly data

The names of the summarization tables are the same as the detailed table name
with an additional one-character identifier. Depending on the summarization
interval that is chosen for the particular attribute group, the additional tables are
created in the Tivoli Data Warehouse.

Important: You can run only one Summarization and Pruning agent per Tivoli
Data Warehouse, even if you have multiple Tivoli Enterprise Monitoring
Servers that are sharing a single Tivoli Data Warehouse database. Running
multiple Summarization and Pruning agents causes conflicts, because the
multiple instances attempt to prune the data in the tables simultaneously. The
negative impact is that the configuration settings for the summarization and
pruning periods have to be set only in one Tivoli Enterprise Monitoring Server;
this monitoring server controls how the data is summarized and pruned for all
monitoring servers.

Note: If a column or table name exceeds the RDBMS name length, the Tivoli
Data Warehouse creates an internal column (or table) name and stores the
internal name and original attribute name in a table called WAREHOUSEID.
This table is also called Tivoli Enterprise Monitoring data dictionary. You can
query this table to determine the correct attribute name for a table or a column
name that has been internally converted. The name length limits are as
follows for each RDBMS supported:

� DB2

Table name = 30 characters

Column name = 128 characters

� Oracle

Table name = 30 characters

Column name = 30 characters

� SQL Server

Table name = 128 characters

Column name = 128 characters

66 Tivoli Management Services Warehouse and Reporting

Table 2-9 shows a Linux CPU tables example.

Table 2-9 Linux CPU tables example

The attributes in the summarized tables are stored in separate tables than the
detailed table attributes. When the attributes are aggregated in the summarized
tables, a separate column is created for each summarization that is performed.

Eight aggregation behavior characterization types are used for aggregation; the
following five types are used most often.

Behavior characterization types
This sections describes the five behavior characterization types that are used
most often.

� GAUGE

These attributes are range-based numeric data. They are aggregated with
MIN, MAX, AVG, and SUM values from the detailed data to the appropriate
summarization period. There are four attributes in the summarized table for
each detailed attribute definition in the detailed table. The original attribute
name is prefixed with MIN_, MAX_, AVG_, and SUM_. For example the
Linux_CPU_D table has the following attributes for the System_CPU
attribute:

– MIN_System_CPU
– MAX_System_CPU
– AVG_System_CPU
– SUM_System_CPU

� COUNT

These attributes have increasing numeric values with occasional resets (for
example, counts of x since ….). They are aggregated with TOTAL, HIGH,
LOW, and LATEST values from the detailed data to the appropriate

Timespan Example

Detail Linux_CPU

Hourly Linux_CPU_H

Daily Linux_CPU_D

Weekly Linux_CPU_W

Monthly Linux_CPU_M

Quaterly Linux_CPU_Q

Yearly Linux_CPU_Y

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 67

summarization period. There are four attributes in the summarized table using
the original attribute name prefixed with TOT_, HI_, LOW_ , and LAT_. For
example, the Linux_System_Statistics_H table has the following attributes for
the System_Uptime attribute:

– TOT_System_Uptime
– HI_System_Uptime
– LOW_System_Uptime
– LAT_System_Uptime

Count type attributes use delta-based aggregation. Delta-based aggregation
algorithms calculate the delta between two intervals and use that number as
the stored value. For example, if you have an attribute that is the total amount
of cache hits since the system has been started, then a delta-based
calculation computes the difference between each cycle interval. At the end
of the summarization period, it totals all deltas, stores the high value, stores
the low value, and stores the last value recorded. For more details about
delta-based summarization, see IBM Tivoli Monitoring Administering Tivoli
Monitoring Guide, SC32-9408.

� PROPERTY

These attributes rarely change (for example, total amount of memory or CPU
speed). There is one attribute in the summarized table that uses the original
attribute name prefixed with just LAT_. For example, the Linux_VM_Stats_Q
(Memory) table has the Total_Swap_Space attribute:
LAT_Total_Swap_Space

� PEAK

These attributes are high watermarks or snapshot-based. There is one
attribute in the summarized table that uses the original attribute name
prefixed with just MAX_. For example the Linux_Swap_Rate_Y table has the
Peak_Swap_Space_Used attribute: MAX_Peak_Swap_Space_Used

� LOW

These attributes are low watermarks or snapshot-based. There is one
attribute in the summarized table that uses the original attribute name
prefixed with just MIN_. For example the Linux_Swap_Rate_Y table has the
Low_Free_Memory attribute: MIN_Low_Free_Memory

The other three types, which are rarely used, are:

� SAMPLECOUNT

These attributes are used to calculate the number of intervals that are
sampled to get an average. There is one attribute in the summarized table
that uses the original attribute name prefixed with just SUM.

68 Tivoli Management Services Warehouse and Reporting

� PDEL

These attributes are deltas precalculated by the application (change over a
period of time). These attributes are aggregated with MIN, MAX, and SUM
values.

� STATE

These attributes are not used at this time. Generally, this is an enumeration
list of options referring to the condition of a resource (for example, up, down).

For more information about the Tivoli Summarization and Pruning agent, see
2.10, “Tivoli Summarization and Pruning agent” on page 103.

2.5.3 Object definitions

In IBM Tivoli Monitoring 6.1, all attribute groups and attributes are defined as
object definitions in files called Object Definition Interchange (ODI) files. You can
obtain most of the Tivoli Data Warehouse V2.1 schema information by knowing
how to interpret the ODI files. You can find the ODI files on the Tivoli Enterprise
Portal Server in the default IBM Tivoli Monitoring 6.1 installation directory (for
example, c:\IBM\ITM\CNPS). The naming format of the ODI files is docnnn,
where nnn is the product identifier.

For example:

� docknt: The ODI file for Windows OS agent
� dockux: The ODI file for UNIX OS agent
� docklz: The ODI file for Linux OS agent
� dockud: The ODI file for DB2 agent

Example 2-3 shows selected parameters from a Windows docknt ODI file.

Example 2-3 docknt ODI file example

*TABLE: WTSYSTEM
*OBJECT: NT_System
*OCCURS: Single
*OPGRP: COM, CONF
*NLSID: KNT0000
*INDEX: IRAKEY USERNAME OSTYPE VERSION
*INDEX: IRAKEY NETADDRESS NUMOFPRCSR PRCSSRTYPE PAGESIZE PCTTLPRIVT
*INDEX: IRAKEY PCTTLPCSRT PCTTLUSERT CTXSWITCH FLECTLBYT FLECTLOP
*INDEX: IRAKEY FLEDATOP FLEREADBTS FLEREADOP FLEWRTEBTS FLEWRTEOP
*INDEX: IRAKEY PRCQUELNG SYSCALLSEC SYSUPTIME TTLINTSEC ALIFIXRATE
*INDEX: IRAKEY EXCDISRATE FLOATERATE
*FILE: VSAM.WTSYSTEM
*REM: System Object

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 69

*REM: Index: 002
The System object type includes those counters that apply to all
processors on the computer collectively. These counters represent the
activity of all processors on the computer.

*ATTR: Processor_Type
*CAPTION:Processor\Type
*COLUMN: PRCSSRTYPE
*TYPE: I,4
*BEHAV: PROPERTY
*NLSID: KNT0020
The type of the processors on the pc.

*ATTR: %_Total_User_Time
*CAPTION:%_Total\User_Time
*COLUMN: PCTTLUSERT
*TYPE: I,4
*BEHAV: GAUGE
*RANGE: 0-100
*ENUM: Unknown=-1
*NLSID: KNT0028
The % Total User Time is the average percentage ...

*ATTR: System_Up_Time
*CAPTION: System Up Time (Seconds)
*COLUMN: SYSUPTIME
*PRINTF: "%u"
*TYPE: I,4
*BEHAV: COUNT
*NLSID: KNT0050
Total Time (in seconds) that the computer has been operational since
it was last started.

The ODI files contain a lot of information about IBM Tivoli Monitoring 6.1 objects.
In this chapter, we describe only ODI files for the purposes of obtaining
information about the Tivoli Data Warehouse V2.1 schema. Therefore, we focus
on only the following ODI keywords:

� *TABLE

Every attribute group is uniquely identified by a *TABLE: keyword in an ODI
file. In this example, WTSYSTEM identifies the short-term binary file table
name for the Windows OS agent. After each *TABLE: keyword are multiple
*ATTR: keywords (one for each attribute defined in that table).

70 Tivoli Management Services Warehouse and Reporting

� *OBJECT

The *OBJECT: keyword identifies the long-term RDBMS table name. If the
table name exceeds the RDBM name limit, an internal name is used in the
RDBMS and the real name is in the WAREHOUSEID table.

� *ATTR

The *ATTR: keyword identifies the column names used in the RDBMS tables.
If the column name exceeds the RDBM name limit, an internal name is used
in the RDBMS and the real name is in the WAREHOUSEID table.

� *COLUMN

The *COLUMN keyword identifies the short name used when the value for
*ATTR exceeds the limit for the database for column name.

� *TYPE

The *TYPE: keyword can be used to determine how the column is stored in
the RDBMS. It does not describe the DDL, but it can give an idea of whether
the column is, for example, a string or an integer.

� *BEHAV

The *BEHAV: keyword describes the aggregation algorithm used for
summarization and pruning. See “Behavior characterization types” on
page 67.

2.6 Storage considerations for Tivoli Data Warehouse
Version 2.1

A monitoring agent’s set of attribute groups characterizes the information that it
monitors. An attribute group can be thought of as a schema for a data table
generated by its monitoring agent. Each attribute group contains several
attributes that comprise the columns of this schema. If historical data collection is
configured for a specific attribute group, an agent generates a row of data for
every monitored instance at every collection interval.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 71

The generated rows contain values for all the attributes contained in an attribute
group’s schema. Each row requires a number of bytes equal to the sum of the
size of each of the attributes1. The total number of bytes collected for a single
attribute group in one collection interval is equal to the row size multiplied by the
number of monitored instances. It must be stressed that the number of rows
might vary between collections depending on the transitory2 nature of the
instances that are monitored. As an example, consider the Windows OS Agent’s
Network Interface attribute group. This group contains the attributes listed in
Table 2-10.

Table 2-10 NT OS agents Network Interface attribute group

1 Consult a monitoring agent’s documentation to determine the size of each of its attribute groups.
2 The transitory nature of a monitored instance depends on what is being monitored; the number of

hard disks on a system might probably remain constant, but the process count can change radically
from one collection interval to the next.

Attribute Attribute size

System Name 64 bytes

Timestamp 16 bytes

Network_Interface_Instance 64 bytes

Current_Bandwidth 4 bytes

Bytes_Total/second 4 bytes

Bytes_Received/second 4 bytes

Bytes_Sent/second 4 bytes

Packets/second 4 bytes

Packets_Received/second 4 bytes

Packets_Sent/second 4 bytes

Output_Queue_Length 4 bytes

Packets_Received_Errors 4 bytes

Packets_Outbound_Errors 4 bytes

Packets_Received_Unknown 4 bytes

Packets_Received_Discarded 4 bytes

Packets_Outbound_Discarded 4 bytes

Packets_Received_Unicast/second 4 bytes

Packets_Sent_Unicast/second 4 bytes

72 Tivoli Management Services Warehouse and Reporting

The total size of a single row is 224 bytes when it is stored in a binary file3, and it
is 236 bytes when stored in the warehouse4. If there are two configured network
interfaces on an operating system that are monitored by a Windows OS agent,
432 bytes of data is collected for the Network_Interface attribute group at each
collection (216 bytes per instance x 2 instances = 432 bytes). The storage
requirements for this data is 448 bytes on the storage location’s hard disk and
472 bytes when finally exported to the warehouse.

Using the collection interval and the instance count, it is simple to determine the
number of historical data rows that are generated by a managed system for an
attribute group during a time interval represented by delta T, as shown in
Figure 2-16.

Figure 2-16 Historical data row equations

Packets_Received_Non-Unicast/second 4 bytes

Packets_Sent_Non-Unicast/second 4 bytes

Output_Queue_Length_kPackets 4 bytes

Total bytes 216 bytes

3 The binary file may contain hidden columns that are not published in the Tivoli Data Warehouse
such as SAMPLES and INTERVAL. Additional columns may exist depending on how they are
declared in the ODI file.

4 The TMZDIFF and the WRITETIME columns always exist in the binary file.

Attribute Attribute size

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 73

Use the equations in Figure 2-16 to make estimates of the disk space that is
required for historical data on a host with one or more managed systems
installed. You can even make projections of the disk space required by a Tivoli
Data Warehouse serving an entire IBM Tivoli Monitoring V6.1 installation. You
have to calculate the space requirements of every host in the environment,
taking into account each configured attribute group associated with every
managed system installed on the host. This process is complex and time
consuming for all but the most trivial environments. However, Tivoli provides two
estimation tools that can greatly simplify this task.

First, the IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407,
contains a worksheet5, which is based on the equations presented in
Figure 2-16. To use the standard worksheet to produce an estimate requires that
you refer to the User’s Guides6 of each agent type for attribute group row lengths
and estimations on the number of instances during a normal collection interval.
This can be tedious for complex environments containing several different types
of monitoring agents.

The IBM Tivoli Monitoring V6.1/Tivoli Data Warehouse 2.1 Warehouse Load
Projections spreadsheet7 provides a more comprehensive solution than the
standard worksheet available in the installation guide. This spreadsheet was
created to simplify the task of producing space requirement estimates for a data
warehouse. It includes attribute group information for over 50 different agent
types, and the user can use it to perform “what-if” exercises to see the effect of
different historical data collection and configuration options. See 2.7, “Tivoli Data
Warehouse Version 2.1 load projection spreadsheet” on page 77, for a more
detailed explanation of this tool.

Estimating storage requirements
Estimating storage requirements on the storage locations and in the data
warehouse is a prerequisite before you configure historical data collection in any
IBM Tivoli Monitoring V6.1 environment. This is especially critical for large-scale
environments, where even low-intensity warehousing configurations can
generate huge amounts of data. Additionally, determine an appropriate

Note: For more information about historical data row equations, see IBM Tivoli
Monitoring Installation and Setup Guide, GC32-9407.

5 The worksheet is on page 34 of the IBM Tivoli Monitoring Installation and Setup Guide,
GC32-9407.

6 You can find the User’s Guides at:
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/com.ibm.itm.doc
/toc.xml

7 The IBM Tivoli Monitoring 6.1/Tivoli Data Warehouse 2.1 Warehouse Load Projections spreadsheet
is available from the Open Process Automation Library (OPAL) Web site.

74 Tivoli Management Services Warehouse and Reporting

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/com.ibm.itm.doc/toc.xml

summarization and pruning strategy to ensure that the warehouse database
tables do not outgrow the storage limitations imposed by the database’s host.

Use the IBM Tivoli Monitoring 6.1/Tivoli Data Warehouse 2.1 Warehouse Load
Projections spreadsheet to determine the following quantities at the storage
locations:

� Number of instance rows generated during a warehouse interval per attribute
group

� Maximum amount of short-term data that is stored at the storage location

The first quantity, the number of generated instance rows, determines the
number of data exports that is required to upload the historical data to the data
warehouse from a particular storage location.

The next quantity determines the disk space requirements of the storage location
for storing short-term data. Remember that short-term data includes data that is
generated during the warehousing interval before it is uploaded to the data
warehouse; if the warehousing interval is 1 hour, there can be up to 25 hours of
short-term data on the storage location. Up to 48 hours of short-term data can be
on the storage location if the warehousing interval is 24 hours.

You can also use the IBM Tivoli Monitoring 6.1/Tivoli Data Warehouse 2.1
Warehouse Load Projections spreadsheet to determine the growth rate of the
warehouse and its average size. The spreadsheet provides a summary page
with the following quantities:

� Total megabytes (MB) of new data that is inserted into the warehouse per hour
� Total gigabytes (GB) of new data that is inserted into the warehouse per day
� Total gigabytes of data retained in the warehouse

The last quantity assumes that a sufficient summarization and pruning strategy is
implemented, otherwise the warehouse grows until the database is full.

As an example, consider a large-scale IBM Tivoli Monitoring V6.1 environment
that consists of 10,000 monitoring systems, 5000 Windows OS agents,
2500 Linux OS agents, and 2500 UNIX OS agents. Historical data collection is
configured for each of the attribute groups that are shown in Table 2-11.

Note: Note that if the Warehouse Proxy agent does not successfully insert the
data in the Tivoli Data Warehouse database, the short-term binary file
continues to grow and might contain more than 48 hours of data.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 75

Table 2-11 Configured historical attribute groups

Using the IBM Tivoli Monitoring 6.1/Tivoli Data Warehouse 2.1 Warehouse Load
Projections spreadsheet and assuming a collection interval of 15 minutes for all
attributes and a warehousing interval of 1 hour, you obtain the following load
estimations:

� 390,000 total record inserts per hour
� 134.5 MB of new data per hour
� 3.2 GB of new data per day
� 224.3 GB of data in the warehouse

The last metric assumes that detailed data is kept for all metrics for 7 days and
that the default settings for hourly, daily, weekly and monthly summarized data
are set. The disk requirements on each agent are:

� 300 KB on Windows
� 400 KB on UNIX
� 200 KB on Linux

Because the volume of data in the warehouse is large, if TEP client users have to
access the warehouse data often, it might be a good idea to think about using
data marts.

A data mart is a repository that contains data that is specific to a particular
business group in an enterprise. All data in a data mart derives from the data
warehouse, and all data relates directly to the enterprise-wide data model. Often,
data marts contain summarized or aggregated data that the user community can
easily consume. Basically, it is a subset of the data from the data warehouse. It is
usually summarized or aggregated that is ready for the user to consume because
a data mart is often defined by the user of the data.

Another way to differentiate a data warehouse from a data mart is to look at the
consumers and format of the data. IT analysts and canned reporting utilities
consume warehouse data, whose storage is usually coded and cryptic. The user
community consumes data mart data, whose storage is usually in a more

Windows OS agents Linux OS agents UNIX OS agents

� Network Interface
� NT_Logical_Disk
� NT_Memory
� NT_Physical_Disk
� NT_Processor
� NT_Server
� NT_System

� Linux_CPU
� Linux_CPU_Averages
� Linux_CPU_Config
� Linux_Disk
� Linux_Disk_IO
� Linux_Disk_Usage_Trends
� Linux_IO_Ext
� Linux_Network
� Linux_System_Statistics

� Disk
� Disk_Performance
� Network
� SMP_CPU
� System

76 Tivoli Management Services Warehouse and Reporting

readable format. For example, to reduce the need for complex queries and assist
business users who might not be familiar with SQL, data tables can contain the
denormalized code table values.

A data mart contains a subset of corporate data that is of value to a specific
business unit, department, or set of users. This subset consists of historical,
summarized, and possibly detailed data that is captured from transaction
processing systems or from an enterprise data warehouse. It is important to
realize that a data mart is defined by the functional scope of its users, and not by
the size of the data mart database.

2.7 Tivoli Data Warehouse Version 2.1 load projection
spreadsheet

The IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407 contains
information about how to estimate the disk space requirements for the Tivoli Data
Warehouse. To perform the steps required to produce an estimate, the user has
has to refer to the User’s Guides for each agent type to be used in the
configuration for attribute group row lengths, and for information about how to
estimate the number of rows that can be generated at each data collection
interval.

The IBM Tivoli Monitoring 6.1/Tivoli Data Warehouse 2.1 Warehouse Load
Projections spreadsheet was created to simplify the task of producing a disk
space estimate for the Tivoli Data Warehouse. This spreadsheet includes the
attribute group information for over 50 different agent types, and the user can
use it to perform “what-if” exercises to see the effect of different historical data
collection configuration options. The spreadsheet includes two predefined charts
showing the contribution of each agent type to the total Tivoli Data Warehouse
disk space estimate. Because it is implemented in a standard spreadsheet
format, other charts can be generated easily.

The total data size estimate that is given in the Summary worksheet (“Total GB of
data in TDW (based on retention settings)”) must be comparable to the one
produced by performing Steps 1 through 5 of the section “Estimating the required
size of your database” of IBM Tivoli Monitoring Installation and Setup Guide,
GC32-9407. The instructions in this manual recommend that you increase this
value by 50% to accommodate uncertainty, and then compare this number to the

Note: For more information about data marts and an example scenario on
how to use them in a Tivoli Data Warehouse environment, see 4.1, “Using
data marts” on page 235.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 77

Database data row in Table 8 on page 35 to determine the number of disks that
you require for your database.

Consider the projections produced by this spreadsheet as rough estimates, but
they are useful in making configuration planning decisions and in performing
sensitivity analysis and what-if exercises. The disk storage required for a given
monitoring configuration depends on complex interrelationships among many
variables, not all of which have been, or can be, modeled. It is the responsibility
of the user to validate the spreadsheet inputs and outputs.

2.7.1 How the spreadsheet works

The spreadsheet is made up of several dozen worksheets. For all of the
worksheets within the spreadsheet, input cells are shown with a green
background. Cells showing calculations based on the input parameters are
shown with a yellow background.

The spreadsheet consists of the following worksheets:

� The ReadMe worksheet describes the model and the limitations of its use.

� The BarGraph worksheet shows a bar graph of the amount of detailed and
aggregate data projected for the Tivoli Data Warehouse, based on the agent
usage parameters specified in other worksheets.

� The PieGraph worksheet shows the same data as the BarGraph worksheet,
except in a pie graph.

� The Summary worksheet is the main worksheet, showing a list of agent types
(both distributed and IBM z/OS-based). The user enters the estimated count
of agents (or managed systems) for each agent type in the green cells. The
yellow cells show summary calculations based on input parameters on this
and other worksheets.

� There is a separate agent worksheet for each agent type listed on the
Summary worksheet (Windows, UNIX, Linux, and so on). There are more
than 50 separate agent worksheets.

To move from one worksheet to another, click one of the tabs at the bottom of the
spreadsheet, as shown in Figure 2-17. Use the arrow buttons on the bottom left
corner to scroll through the different worksheets.

Figure 2-17 Load projection spreadsheet worksheets

78 Tivoli Management Services Warehouse and Reporting

Typical usage scenario
In a typical usage scenario, the user opens the Summary worksheet. For each
agent type to be monitored in the configuration, the user enters the expected
number of agents on the Summary worksheet, and then switches to the
corresponding agent worksheet to specify more details about what must be
monitored for agents of that type.

For example, if a configuration contains 100 UNIX agents to be monitored, the
user enters 100 for the UNIX count, as shown in Figure 2-18.

Figure 2-18 Load projection spreadsheet summary page example

The user switches to the UNIX worksheet to specify more details about the
historical data collection configuration. After the user specifies input parameters
for each agent type to be used in the monitoring configuration, the Summary
worksheet contains the total disk space estimate for data to be stored in the
warehouse.

Usage notes
Because the spreadsheet includes attribute group information for a large number
of agent types, the bar and pie charts contain many agent types that are not
being used. To remove these unused agent types from the graphs, you can hide
the rows for the unused agent types in the Summary worksheet. To hide a row,
click the row number at the left of the row to select it, then right-click and select
Hide from the pop-up menu. You can hide multiple rows in one operation by
using the Ctrl and Shift keys when selecting the rows. To show rows that are
hidden, select the rows before and after the hidden rows, right-click and select
Unhide from the pop-up menu.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 79

Figure 2-19 is an example of the BarGraph with the unused agent types included.

Figure 2-19 Load projection spreadsheet bar graph example with unused agent types

80 Tivoli Management Services Warehouse and Reporting

With the unused agent types hidden, the graph is much more legible, as shown
Figure 2-20.

Figure 2-20 Load projection spreadsheet bar graph example with only used agents

2.7.2 Details for the agent worksheets

For each agent type shown on the Summary worksheet, there is a separate
worksheet that lists the attribute groups that are eligible for historical data
collection and warehousing.

Note: For some agent types, such as the CICS agent, multiple instances (for
example, CICS regions) are monitored as managed systems using
sub-nodes. For these agents, specify the number of managed systems for the
Count value on the Summary worksheet.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 81

Figure 2-21 shows the UNIX agent worksheet.

Figure 2-21 UNIX agent worksheet example

The first line of the agent worksheet lists the agent name, the release number
reflected in the spreadsheet, and the product code. The next eight lines contain
summary calculations for the agent. The first of these, “Number of agents (from
Summary worksheet)”, is a cell reference to the Summary worksheet cell, where
the user entered the number of agents of that type to be monitored. The
remaining summary statistics are discussed in the following sections.

Attribute group input parameters
Beneath the summary calculations is a table that contains the agent attribute
groups that are eligible for historical data collection.

� The first column shows the attribute group name, which corresponds to the
table name used in the Tivoli Data Warehouse. Attribute groups that are part
of the “default group” for historical data collection are shown in Bold. The
default group is not enabled by default, but if the user selects “Show Default
Groups” from the TEP Historical Data Collection Configuration Panel, these
attribute groups are displayed.

82 Tivoli Management Services Warehouse and Reporting

� The second column “Collection Interval” is an input column. For attribute
groups to be collected, the user must specify the data collection interval in
minutes. Valid values are 5, 15, 30, or 60. If the data collection interval is not
specified, the attribute group is not included in any summary calculations.

� The third column “Average Rows / Interval” is used to specify the number of
rows the user expects to have logged per data collection interval. Some
attribute groups (such as UNIX System and UNIX Network) only log one
record per interval. Other attribute groups can log multiple records per
interval. For attribute groups that only write one row per interval, the cell in
this column contains the value “1” and it does not have a green background.

� The fourth column “Expected number of instances/rows” contains information
from the agent documentation (if available) that can be helpful in determining
how many rows to expect for a given attribute group. The fourth column is
“help” information that is used in specifying values for the third column.

� The fifth column is used to specify how many days of detailed data is kept in
the warehouse for this attribute group. This assumes that the user has the
Summarization and Pruning agent or some other mechanism in place to
remove old data from the warehouse.

� For agents that exploit the capabilities of the Summarization and Pruning
agent, the next six columns are used to specify how many aggregate records
are kept in the warehouse for the attribute group. The columns are for Hourly,
Daily, Weekly, Monthly, Quarterly, and Yearly records. Tables for these
aggregation periods are created by the Summarization and Pruning agent,
based on specified configuration parameters.

– For example, to represent a two-year retention of weekly records, the
number of aggregate records for the Weekly table is 2 years x
52 weeks/year or 104 aggregate records.

– To represent a 60-day retention of hourly records, the number of
aggregate records for the Hourly table is 60 days x 24 hours/day or
1440 aggregate records.

For agents that do not yet exploit the capabilities of the Summarization and
Pruning agent, these columns are hidden.

Attribute group calculated values
The remainder of the columns and cells in the agent worksheets represent
calculated values based on the input parameters given in the green cells.
Several columns are displayed to the right of the green input parameters for the
attribute groups, as shown in Figure 2-22.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 83

Figure 2-22 Load projection spreadsheet attribute group calculated values example

There is a group of columns with a yellow background that show calculated
values. To the right of these columns is a group of four columns with a white
background, which contains agent attribute group information. The following list
describes the last four columns:

� The first column, “AgentRowSize,” shows the estimated row length in bytes
for storing a row of attribute group information at the agent.

� The second column, “DetailRowSize,” shows the estimated row length in
bytes for storing a row of detailed data for the attribute group in the
warehouse.

� The third column, “AggRowSize,” shows the estimated row length in bytes for
storing a row of aggregate data for the attribute group in the warehouse. The
aggregate records are produced by the Summarization and Pruning agent.
For agents that do not yet exploit the capabilities of the Summarization and
Pruning agent, this column is hidden.

� The fourth column, “Agent Tablename,” shows the name of the file that is
used to store short-term historical data for the attribute group at the agent.
Short-term historical data has not yet been written to the warehouse, and is
typically less than 24 hours old. This column is not used in any calculations,
but is included for reference.

In most cases, data for these last four columns is taken from the agent User’s
Guides, which you can find at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/
com.ibm.itm.doc/toc.xml

84 Tivoli Management Services Warehouse and Reporting

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/com.ibm.itm.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/com.ibm.itm.doc/toc.xml

The columns with a yellow background contain calculations based on the input
parameters (with a green background) and the attribute group row sizes (with a
white background). The following list describes each of these columns:

� The “TDW inserts/hour/agent” column is calculated as:

(60 / collection interval) * average rows/interval

Dividing 60 (the number of minutes in an hour) by the collection interval in
minutes gives the number of data collection intervals per hour. Multiplying this
by the average rows per interval gives the average number of Tivoli Data
Warehouse row inserts per hour for each agent.

� The “TDW bytes inserted/hour/agent” column is calculated by multiplying the
value for the “TDW inserts/hour/agent” column by the value for the
“DetailRowSize” column.

� The “Agent HDC Disk Space KB/agent” column shows an estimate of the
amount of disk space (in KB) required for the short-term historical data
collection for the attribute group on the agent. This is the approximate size of
the file with the file name shown in the “Agent Tablename” column. This value
is calculated by multiplying the value from the “TDW inserts/hour/agent”
column by the “AgentRowSize” column, multiplying it by 24 (the number of
hours of short-term historical data kept on the agent), and dividing it by 1024
(to convert the result from bytes to KB).

� The next column shows the estimated size in MB to keep the specified
number of days of detailed data in the warehouse for this attribute group for
all of the agents to be monitored. This estimate is calculated by multiplying
the number of agents of this type (from the Count column on the Summary
worksheet) by:

“TDW inserts/hour/agent” * “DetailRowSize” * 24 (hours/day) *
Number of days of detailed data / 1024 (bytes per KB) / 1024 (KB per
MB)

This calculation yields a result in MB.

� For agents that exploit the Summarization and Pruning agent, the next six
columns show the size for the aggregate tables, based on the number of
aggregate records for each aggregation period, and the “AggRowSize”
column. A seventh column shows the total number of aggregate records for
this attribute group, which is the sum of the six aggregate interval count input
parameters shown with a green background.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 85

Agent summary calculated values
The top portion of the Agent workspace (Figure 2-23) shows a set of calculated
values, which are based on the attribute group calculations described in the
previous section.

Figure 2-23 Load projection spreadsheet agent summary calculated values example

The following values are shown at the top of the agent worksheet:

� Number of agents (from Summary worksheet)

This cell contains a reference to the Count value that is specified on the
Summary worksheet. This cell is used in the attribute group calculations in the
agent worksheet.

� TDW record inserts/hour/agent

This value is the sum of the attribute group “TDW inserts/hour/agent”
estimates contained further down in the agent worksheet.

� TDW KB inserted/hour/agent

This value is the sum of the attribute group “TDW bytes inserted/hour/agent”
estimates contained further down in the agent worksheet.

� Agent HDC Disk Space (MB – per agent, across all attribute groups)

This value is the sum of the attribute group “Agent HDC Disk Space
KB/agent” estimates, converted to MB result.

86 Tivoli Management Services Warehouse and Reporting

� TDW Disk Space – Detailed data (MB – total across all attribute groups for all
agents)

This value is the sum of the attribute group detailed data disk space estimates
(column O).

� TDW Disk Space – Aggregate data (MB – total across all attribute groups for
all agents)

This value is the sum of the attribute group aggregate table disk space
estimates (column P through U), for agent types that exploit the capabilities of
the Summarization and Pruning agent.

� Average size for detailed records (bytes)

This value is calculated by multiplying the “TDW KB inserted/hour/agent”
estimate by 1024 (to convert it to bytes), and then dividing by the “TDW
record inserts/hour/agent” estimate.

� Average size for aggregate records (bytes)

This value is calculated by multiplying the “TDW Disk Space – Aggregate
data” result by 1024 (to convert it to bytes), and then dividing the result by the
sum of the “Total Num. Aggregate Records” values across all of the attribute
groups.

Most of the values from top portion of the agent worksheet are referenced from
the Summary worksheet.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 87

2.7.3 Detail of the Summary worksheet

Figure 2-24 shows a sample view of the Summary worksheet.

Figure 2-24 Load projection spreadsheet summary worksheet: Example 1

There are three main areas in the Summary worksheet. The upper left side lists
some brief notes and assumptions, and gives summary results for the specified
set of input parameters. The upper right side shows a bar graph of the disk space
estimates by agent type. This graph is a smaller version of the graph shown on
the BarGraph worksheet.

The lower part shows a list of the agent types, with an input cell to specify the
count of agents (or managed systems) of each type in the desired configuration.
The cells with a yellow background show the summarized values based on
results from the individual agent worksheets (see 2.7.2, “Details for the agent
worksheets” on page 81). See Figure 2-25.

88 Tivoli Management Services Warehouse and Reporting

Figure 2-25 Load projection spreadsheet summary worksheet: Example 2

Agent summary calculated values
The following summarized values are shown for each agent type:

� TDW record inserts/hour

This value is an estimate of the total number of detailed records inserted into
the warehouse database per hour for the given agent type. This value is
calculated by multiplying the Count input value by the “TDW
inserts/hour/agent” value (column I, which is a reference to the “TDW record
inserts/hour/agent” value from the Agent worksheet).

� TDW MB inserted/hour

This value is an estimate of the total amount of detailed data (in MB) inserted
into the warehouse database per hour for the given agent type. This value is
calculated by multiplying the Count input value by the “TDW KB
inserted/hour/agent” value (column J, which is a reference to the value of the
same name from the Agent worksheet), and dividing it by 1024 to convert
from a KB value to a MB value.

� TDW Detailed MB Total

This value is an estimate of the total amount of detailed data (in MB) that
resides in the warehouse database for the given agent type, based on the
specified warehouse retention settings. This value is a reference to the “TDW
Disk Space - Detailed data (MB - total across all attribute groups for all
agents)” value from the Agent worksheet.

� TDW Aggregate MB Total

This value is an estimate of the total amount of aggregate data (in MB) that
resides in the warehouse database for the given agent type, based on the

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 89

specified warehouse retention settings. This value is a reference to the “TDW
Disk Space - Aggregate data (MB - total across all attribute groups for all
agents)” value from the Agent worksheet.

The next five calculated values are references to values of the same name from
the Agent workspaces.

Summary calculated values
The upper left part of the spreadsheet contains the summarized values across all
agent types, as shown in Figure 2-26.

Figure 2-26 Load projection spreadsheet summary calculated values example

The following summarized values are shown in Figure 2-26:

� Total TDW record inserts per hour

This value is an estimate of the total number of row inserts of detailed data
that will be performed per hour by the Warehouse Proxy agent. This value is
calculated by summing the “TDW inserts/hour/agent” values for each agent
type shown in the lower portion of the Summary worksheet.

� Average length of records inserted (bytes)

This value is an estimate of the average length of detailed rows inserted into
the warehouse. This value is calculated by dividing the “Total MB of new data
inserted into TDW per hour” value (which is described in the following section)
by the “Total TDW record inserts per hour” value (described in the previous
section).

� Total MB of new data inserted into TDW per hour

This value is an estimate of the total amount of detailed data (in MB) inserted
into the warehouse database per hour across all agent types. This value is
calculated by the sum of the “TDW MB inserted/hour” values for each agent
type shown in the lower portion of the Summary worksheet.

� Total GB of new data inserted into TDW per day

This value is an estimate of the total amount of detailed data (in GB) inserted
into the warehouse database per day across all agent types. This value is
calculated by multiplying the “Total MB of new data inserted into TDW per
hour” value by 24 (hours/day), and dividing it by 1024 (to convert from MB to
GB).

90 Tivoli Management Services Warehouse and Reporting

� Total GB of data in TDW (based on retention settings)

This value is an estimate of the total amount of detailed data and aggregate
data (in GB) to be stored in the warehouse, based on the retention settings
specified for each attribute group. This value is calculated by the sum of the
“TDW Detailed MB Total” and “TDW Aggregate MB Total” values across all
agent types.

The “Total GB of data in TDW” result gives an estimate of the total amount of
data that can be maintained in the warehouse database. This estimate is similar
to that which is produced by Steps 1 through 5 in the section “Estimating the
required size of your database” of the IBM Tivoli Monitoring Installation and
Setup Guide, GC32-9407. The instructions in this manual recommend that you
increase this value by 50% to accommodate uncertainty, and then compare this
number to the Database data row in Table 8 on page 35 to determine the number
of disks that you require for your database.

2.8 Deployment considerations for Tivoli Data
Warehouse V1.X clients

With the new release of the Tivoli Data Warehouse (Version 2.1) and IBM Tivoli
Monitoring (Version 6.1), some concerns have been raised due to the difference
in architectures between older versions of these products. In 1.4, “Differences
between Tivoli Data Warehouse V2.1 and 1.x” on page 9, we have already
discussed the differences between the two Tivoli Data Warehouse versions from
the implementation, usability, and scalability perspectives. In this section, we
provide some guidance to clients using Tivoli Data Warehouse V1.x.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 91

Figure 2-27 shows the differing architectures of Tivoli Monitoring V5.x and V6.1.

Figure 2-27 Tivoli Monitoring V6.1 versus V5.x

As shown in Figure 2-27, the main difference between the architectures is a
move from the base Tivoli Framework and a shift to a new database schema
included with Tivoli Data Warehouse V2.1.

Tivoli Data Warehouse Version 2.1 moves away from data marts, star schemas,
and extract, transform, and load (ETLs) to a more simple schema and population
mechanism. It also provides a self-pruning capability and an integrated viewing
in the Tivoli Enterprise Portal.

92 Tivoli Management Services Warehouse and Reporting

Figure 2-28 compares the Tivoli Data Warehouse V1.x architecture with V2.1.

Figure 2-28 Tivoli Data Warehouse: V1.x versus V2.1

We recommend that current clients who use Tivoli Data Warehouse V1.3 in
production to deploy a shadow Tivoli Monitoring V6.1 environment to stay
up-to-date with new product releases and to use the new functionality that is
being introduced by new versions of Tivoli Service Level Advisor. Use existing
Tivoli Data Warehouse 1.x reports only on Tivoli Data Warehouse 1.x data. The
two products can share the same database, but the Tivoli Data Warehouse 1.x
data is not migrated to Tivoli Data Warehouse V2.x data.

Tivoli Distributed Monitoring V3.7 clients have to continue making use of the
Tivoli Data Warehouse V1.3 reporting for their currently existing agents when
they follow the upgrade path. They have to maintain both data warehouses and
prune them individually during the upgrade period. Tivoli Monitoring V5.x clients
as an interim can make use of the Tivoli Monitoring V5.x integration agent to
import their current V5.x agents data into the Tivoli Data Warehouse V2.1
database. This agent can run in parallel with the current Tivoli Monitoring V5.x
agent.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 93

Figure 2-29 shows the suggested architecture for existing Tivoli Data
Warehouse V1.x and Tivoli Distributed Monitoring V3.7 clients.

Figure 2-29 Suggested architecture for existing Tivoli Data Warehouse V1.x and
Distributed Monitoring V3.7 clients

2.9 Tivoli Warehouse Proxy

The Warehouse Proxy agent is a special agent that handles warehousing
requests from all managed systems in the enterprise. It provides a conduit from a
historical data client (Tivoli Enterprise Monitoring Server or Tivoli Enterprise
Monitoring Agent depending on configuration options) to the Tivoli Data
Warehouse. It uses ODBC or JDBC to write the historical data to a supported
relational database. The Warehouse Proxy connects to a hub monitoring server.

The amount of historical data generated can be huge, particularly in
environments with thousands of monitoring agents or when instance intense
attribute groups are enabled. You can use multiple Warehouse Proxies to
distribute load in a large-scale environment. Properly configuring the Warehouse
Proxy agents can ensure all historical data is smoothly transferred to the Tivoli
Data Warehouse. An improper configuration can cause poor performance of the
proxy and historical data buildup on the storage locations.

94 Tivoli Management Services Warehouse and Reporting

2.9.1 Tivoli Warehouse Proxy internals

Default settings for the Warehouse Proxy agent parameters must be suitable for
most environments. Before you modify the parameters, it is helpful to have a
basic understanding of how the Warehouse Proxy agent collects and transfers
data to the warehouse.

The internal structure of the proxy comprises three distinct components:

� The Intelligent Remote Agent (IRA) communication framework
� The work queue
� The exporter threads

These three components work together to collect, translate, and transmit
historical data to the warehouse. Historical data flows from one component to the
next, undergoing specific processing at each step before being passed on.

Figure 2-30 shows the architecture of Tivoli Warehouse Proxy and illustrates how
data is transferred from the agents, through the proxy components, and then into
the warehouse.

Figure 2-30 Components of the Tivoli Warehouse Proxy agent

Important: We suggest that you contact your IBM support representative,
before changing any of these parameters.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 95

The components of the Tivoli Warehouse Proxy agent are further described in
the following sections.

IRA communication framework
The Warehouse Proxy agent is considered an IBM Tivoli Monitoring V6.1 agent
because it uses the IRA framework to provide most of its basic functionality. This
includes how it communicates with the IBM Tivoli Monitoring V6.1 hub Tivoli
Enterprise Monitoring Server and the other IBM Tivoli Monitoring V6.1
processes. In environments where a large amount of historical data is collected,
the Warehouse Proxy agent can experience a very high volume of Remote
Procedure Calls (RPCs). Because of this, tuning the communication framework
of the proxy might be necessary.

The Warehouse Proxy agent uses one of the common communication transports
to receive and respond to the historical data export requests sent from the
IBM Tivoli Monitoring V6.1 clients that are uploading the data. Both the reliability
and speed of an upload is affected by the selected protocol. The socket count
and memory profile of the Warehouse Proxy agent are also affected.

The ip.pipe protocol is the most reliable protocol to use for historical data
uploads. Each client maintains a connection with the proxy, and export requests
have the reliability of TCP. It is also typically the fastest. Unreliable transfers give
rise to broken exports, requiring the client to retry the export later. For historical
data uploads, reliability equals speed.

The ip.spipe protocol functions similarly to the ip.pipe protocol, but imposes
encryption and decryption on the transferred data. This impacts the speed of the
data uploads, but provides the same reliability as ip.pipe. The ip.udp protocol
must be used for communication to agents that have good network connectivity
to the proxy and only if the additional resources required on the proxy host are
not available to support an ip.pipe server/client configuration.

The number of threads processing the incoming RPC calls can also affect the
performance and reliability of the communication framework. These threads are
controlled by the IRA framework, and are called network control segment (NCS)
listen threads. The number of NCS listen threads associated with an agent can
be modified using the CTIRA_NCSLISTEN environment variable. The default
number created for all IBM Tivoli Monitoring V6.1 agents is 10, but this might be
insufficient for the Warehouse Proxy agent. Enabling 10 NCS listen threads per
export thread is a good starting place. Increase the ratio if the proxy’s insertion
rate is adequate but there are numerous RPC errors in the proxy’s log file.

96 Tivoli Management Services Warehouse and Reporting

The work queue
The work queue provides the proxy with a scalable and simple export scheduling
solution. When all the historical data for an export request is uploaded to the
Warehouse Proxy agent, the data structure containing the export buffer is placed
on the work queue. Exports are processed in order by the exporter threads. The
exporter threads become dormant, if no more work is available on the queue.
When the queue reaches its maximum size, the proxy no longer accepts export
requests from the clients.

The size of the work queue can be set using the KHD_QUEUE_LENGTH
environment variable and defaults to a value of 1000. The queue size must be
set equal to the number of clients that regularly upload data to a particular proxy.
This ensures that each client is able to place at least one export buffer on the
queue during a collection interval, provided no export errors occur. Because the
majority of the memory used by the Warehouse Proxy is allocated for storing the
historical data in the export buffers, modifying this value changes the maximum
amount of memory that the Warehouse Proxy requires. To estimate the export
buffer contribution to memory, multiply the row size of the largest attribute group
by 1000, and then multiply by the value of KHD_QUEUE_LENGTH that you have
set. For example, if there are 2000 agents uploading historical data for the
Network_Interface attribute group, the maximum size of the proxy due to the
export buffers is 432 MB. This assumes that KHD_QUEUE_LENGTH is set to
2000 and that each row of the Network_Interface attribute group is 216 bytes.

It might be necessary to limit the size of the proxy by setting the
KHD_QUEUE_LENGTH to a value less than the number of exporting clients. In
this case, it is important to estimate the number of rejected requests due to a full
queue size, and to determine if all of the export requests are being serviced. The
work queue maintains a set of metrics that track queue performance and
workload. The maximum queue size, the total number of rejected requests, and
the total work queued metrics provide the most useful information regarding
rejection percentages. If the value of maximum queue size is greater than the
value of KHD_QUEUE_LENGTH, it is possible that some export requests never
get serviced. Calculate the ratio of total number of rejected requests to the total
work queued metric. This number provides the percentage of requests that were
rejected due to the export queue being full. If the value of this ratio is over 0.2, it
is possible that there are some export requests that never get serviced.
Increasing KHD_QUEUE_LENGTH is probably warranted.

Tip: You can set these Warehouse Proxy agent environment variables in the
KHDENV file in %CANDLEHOME%\TMAITM6 on Windows and in the hd.ini
file in $CANDLEHOME/config on AIX and Linux.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 97

The exporter threads
The exporter threads remove export buffers from the work queue, prepare SQL
statements appropriate for the data, and insert data into the warehouse using a
Java Database Connectivity (JDBC) or ODBC bridge supported by the
warehouse database. After the export has finished, the export thread notifies the
client of the export status. The number of exporter threads and database
connections affect the rate at which data is inserted into the warehouse.

Before Fix Pack 2, the Warehouse Proxy agent was only supported on Windows
platforms and used an appropriate ODBC interface to connect to the data
warehouse. Fix Pack 2 introduced support for a Warehouse Proxy running on
selected Linux platforms, using a JDBC interface appropriate for the data
warehouse. Fix Pack 2 also introduced batch inserts that can increase the data
insertion rate of the Warehouse Proxy agent. This is especially true if the proxy
and the warehouse are located on different hosts. Batch inserts are supported for
both ODBC and JDBC warehouse connections. To enable batch inserts, set
KHD_BATCH_USE=Y. Batch option is discussed more in 4.3, “Batch option” on
page 243.

To configure the number of exporter threads, use the environment variable
KHD_EXPORT_THREADS. The default number of exporter threads is 10. This is
a good default setting and can serve for most database and host configurations.
The system resources required by the 10 export threads and the associated
database connections are minimal, and are well worth the extra performance that
the concurrent exports provide. If the value of KHD_EXPORT_THREADS is
decreased, be sure to change the CNX_POOL_SIZE to the same value. The
excess connections are not used, and they consume system resources
unnecessarily.

Proxy agents using the JDBC interface start a Java Virtual Machine (JVM™) to
support Java Native Interface (JNI) calls to JDBC. If the heap size of the JVM is
set to a low value, proxy performance can be degraded by frequent garbage
collections. Setting KHD_JNI_VERBOSE=Y in the hd.ini file enables logging of
the garbage collector’s actions. If the Java log contains several garbage
collection entries during a single warehousing interval, consider increasing the
size of the java heap. You can do this by using the KHD_JAVA_ARGS
environment variable and the –Xmx<heap size>m JVM option.

98 Tivoli Management Services Warehouse and Reporting

2.9.2 The Tivoli Warehouse Proxy step by step

Figure 2-31 illustrates the operation of the Tivoli Warehouse Proxy. This section
describes this operation in detail.

Figure 2-31 Operation of the Tivoli Warehouse Proxy agent

When the Warehouse Proxy starts, it registers its network address with the global
location broker on the hub Tivoli Enterprise Monitoring Server. If data collection
is set up to store data at the Tivoli Enterprise Monitoring Server, the Tivoli
Enterprise Monitoring Server checks the global location broker for the
Warehouse Proxy agent location when the export starts.

If data collection is set up to store data at the agent, the Tivoli Enterprise
Monitoring Server checks the global location broker every 60 minutes for the
Warehouse Proxy agent location. The Tivoli Enterprise Monitoring Server sends
this address to all of its online agents. After starting the Tivoli Enterprise
Monitoring Server if you change the location of the Warehouse Proxy agent, it
may take 1 hour after the Warehouse Proxy agent starts for the warehouse proxy
address to be sent to the agents.

The KPX_WAREHOUSE_CHK variable allows the Tivoli Enterprise Monitoring
Server to check the global location broker for the Warehouse Proxy agent
location. For example, setting the variable KPX_WAREHOUSE_CHK=5 causes it

JDBC

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 99

to check for the Warehouse Proxy agent location every 5 minutes. Every
collection time (5, 15, 30, or 60 minutes) depending on the setting that you have
specified, new data is collected and stored in the binary file on the agent or the
Tivoli Enterprise Monitoring Server.

Every warehousing time (1 hour or 1 day) depending on the setting that you have
specified, the export service (khdxcl1) uses worker threads to find the
Warehouse Proxy agent address, and then export per batch a maximum of 1000
rows from each binary file. There can be one or more worker threads per binary
file. By default, the maximum number of worker threads is set to 10. This is set
with the variable KHD_EXPORT_THREADS =10.

The export worker threads are then placed on a working queue. The maximum
size of the queue is set to 1000. This is set by the variable
KHD_QUEUE_LENGTH=1000. Each worker thread requests an ODBC/JDBC
connection from the connection pool. The connection pool is initialized when the
Warehouse Proxy agent is started. The default number of connection in the pool
is set to 10. This is set by the variable KHD_CNX_POOL_SIZE=10. It is
important to set the number of worker threads greater or equal to the number of
ODBC/JDBC connections. Therefore, the variable KHD_EXPORT_THREADS
(see “The exporter threads” on page 98) must be greater than or equal to that of
KHD_CNX_POOL_SIZE.

In addition to the configurable environment variables mentioned previously, the
standard agent framework provides some control over the Warehouse Proxy
agent’s scalability and performance profile. When the Warehouse Proxy agent
starts up, it initializes a number of RPC listeners. This is set with the variable
CTIRA_NCSLISTEN=10 (see “IRA communication framework” on page 96).

If the export request is successful, that is, all the data from the export is inserted
successfully in the database before the server timeout, a successful status is
sent to the export service on the agent or Tivoli Enterprise Monitoring Server
depending where you have configured the collection point. If this is not the case,
an unsuccessful status (with a status number indicating the reason of failure) is
sent to the export service.

On the agent or Tivoli Enterprise Server depending where you have configured
collection when a successful export status is received, an entry is created in the
marker file khdexp.cfg for the corresponding table and with the last WRITETIME
time stamp inserted in the database. If no status has been received before the
client timeout, a new export request is sent.

After every successful export, all the data older than 24 hours in the binary file is
pruned if the corresponding data has been successfully inserted in the database.
This is done using the marker file khdexp.cfg.

100 Tivoli Management Services Warehouse and Reporting

A client timeout can occur if a status has not been received from the Warehouse
Proxy before the timeout set by the variable KHD_STATUSTIMEOUT (the
default is 900s or 15 minutes). If this occurs the export request is re-sent.

A server timeout can also occur and the current export can be rejected by the
Warehouse Proxy agent at the following four stages:

� Stage END_QUEUE: If the time between when the export is sent to the work
queue and the time before it is extracted from the queue exceeds the server
timeout, the export request is rejected.

� Stage START EXPORT: If the time between when the export is sent to the
work queue and the time before it starts to do some existence checking in the
database exceeds the server timeout, the export request is rejected.

� Stage START SAMPLE: If the time between when the export is sent to the
work queue and the time before it fetches all the rows in the sample exceeds
the server timeout, the export request is rejected.

� Stage COMMIT EXPORT: If the time between when the export is sent to the
work queue and the time before committing the rows in the database exceeds
the server timeout, the export request is rejected.

The server timeout is configured with the variable KHD_SRV_STATUSTIMEOUT
and by default is set to 600s (10 minutes).

2.9.3 Multiple Warehouse Proxies

IBM Tivoli Monitoring V6.1 Fix Pack 2 added support for multiple Warehouse
Proxies in a single IBM Tivoli Monitoring V6.1 enterprise. This introduces both
greater scalability and flexibility to the IBM Tivoli Monitoring V6.1 data
warehousing solution. All Warehouse Proxies associated with the enterprise
register with the hub Tivoli Monitoring Server’s global location broker and must
export data to a single warehouse.

Warehouse Proxy agents existing in a multiple environment are installed exactly
as though they are to exist alone. Consult the IBM Tivoli Monitoring Installation
and Setup Guide, GC32-9407, for specific details about the installation and
configuration of a Warehouse Proxy agent. All proxies must be configured to use
the hub Tivoli Enterprise Monitoring Server as their parent. When installed, a
proxy can be associated with a subset of the enterprise’s Tivoli Enterprise
Monitoring Server instances by adding the KHD_WAREHOUSE_TEMS_LIST
environment variable to the environment file of the proxy. This is KHDENV for

Note: The KHD_SRV_STATUSTIMEOUT variable must always be less than
the KHD_STATUSTIMEOUT by at least 60s.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 101

Windows installations and hd.ini for Linux or UNIX installations. The
KHD_WAREHOUSE_TEMS_LIST is a space-delimited list of Tivoli Enterprise
Monitoring Server instance names. Any Tivoli Enterprise Monitoring Server
instance in this list might select the configured proxy to be its monitoring agent’s
export server. The names of the Tivoli Enterprise Monitoring Server instances in
the list are limited to length of 64 bytes and cannot contain spaces. An example
setting for KHD_WAREHOUSE_TEMS_LIST might look like:

KHD_WAREHOUSE_TEMS_LIST=REMOTE_TEMS1 REMOTE_TEMS2

Upon startup, a proxy attempts to register itself with the global location broker on
the hub. It makes this attempt every five minutes or until it succeeds, after which
it re-registers its information with the hub every hour. The registered entry in the
global location broker contains the list of Tivoli Enterprise Monitoring Server
machines that it is configured to service. If no other proxy is configured as the
default proxy for this enterprise, it registers itself as the default proxy.

Every Tivoli Enterprise Monitoring Server instance in the IBM Tivoli Monitoring
V6.1 enterprise queries the global location broker on the hub to determine which
Warehouse Proxy it is associated with. The query uses the name of the Tivoli
Enterprise Monitoring Server to perform the lookup. If a matching proxy is found,
the Tivoli Enterprise Monitoring Server sends this proxy’s address to all of its
child agents to use during historical data exports. A Tivoli Enterprise Monitoring
Server instance checks the global location broker every hour for updates, and
re-sends these updates to its agents, if required. This interval can be modified
using the KPX_WAREHOUSE_REGCHK environment variable. This value
specifies the number of minutes to wait between rechecking the global location
broker and has the default value of 60.

To verify that the proxy is registering with the hub, add the (UNIT: khdxrpcr
STATE) trace entry to the proxy’s environment file. This setting prints the value
of KHD_WAREHOUSE_TEMS_LIST and shows any errors associated with
proxy registration.

To determine which Warehouse Proxy a particular Tivoli Enterprise Monitoring
Server selects for its agents, add the (UNIT: kpxrwhpx STATE) trace entry to the
Tivoli Enterprise Monitoring Server environment. This setting logs entries in the
Tivoli Enterprise Monitoring Server’s RAS log whenever a registration change
occurs, displaying the address of the new proxy.

Selecting the number of proxies for an enterprise primarily depends on the
number of clients and factors described in “IRA communication framework” on
page 96. When the historical data is uploaded from the clients to the proxy, this
completes a major part of the process, particularly if the warehouse is properly
tuned and its warehouse’s host system is robust. If the clients are using ip.pipe or
ip.spipe as the primary protocol when contacting the proxies, an optimal

102 Tivoli Management Services Warehouse and Reporting

configuration associates no more than 2000 clients to each proxy. A client to
proxy ratio of 2000 performs acceptably, provided the proxy is installed on a
platform that meets the basic system requirements for a proxy installation.
Consult the IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407, for
these requirements.

Using ip.udp results in more orphaned exports and rejected requests, particularly
across slower networks. Before Fix Pack 2, no more than 2000 clients were able
connect to a single proxy using ip.pipe or ip.spipe. Fix Pack 2 relaxed this
limitation on both ODBC-based and JDBC-based clients.

2.10 Tivoli Summarization and Pruning agent

The Summarization and Pruning agent performs the aggregation and pruning of
the data inside the Tivoli Data Warehouse Version 2.1. The Tivoli Monitoring
Version 6.1 administrator sets up how often to collect the detailed data, what
intervals to aggregate and prune on, and how often to run the aggregation and
pruning engine.

2.10.1 Tivoli Summarization and Pruning agent internals

The Summarization and Pruning agent manages the data in the data warehouse
by aggregating historical data into time-based categories and removing data
(both detailed and summarized) older than a specified age. The time-based
categories are hourly, daily, weekly, monthly, quarterly, and yearly. Pruning can
be enabled for each time-based category and for the detailed data. Managing the
data in the warehouse is a requirement for any sustainable warehouse
configuration. This is particularly true for large-scale environments. The
Summarization and Pruning agent is a multi-threaded, Java-based application. It
interacts with the warehouse using a JDBC driver appropriate to the warehouse’s
database.

Historical data retention
Each time-based category has a retention period that specifies how long the data
is retained in the warehouse before it is purged by the Summarization and
Pruning agent. The time-based categories for short time durations exhibit higher
retained row counts than the ones for longer time durations. Table 2-12 shows
the number of rows retained per retention time unit for a single instance of an
attribute group. It also includes the total retained row count, the default retention
unit, and the default retention configuration. Values for each time-base category
are displayed.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 103

Table 2-12 Number of rows retained per retention time unit

Three years have to elapse before this level of warehouse saturation is realized.
The short duration time-based categories reach saturation sooner and also
contribute much more to the total row count than the long duration periods. The

Note: In Table 2-12, the detail data number was calculated for an attribute
group that only returns exactly one instance and the collection interval is
5 minutes.

For the non-detailed data, the exact calculation formula is as follows
(depending on your assumptions, the non-detailed data numbers that you
calculate might be different from the ones given in Table 2-12.)

1. Hourly rows retained per month is: 24 * (number of days in month) * (2 if
shifts are enabled; 1 if shifts are not enabled)

2. Daily rows retained per year is: (365 or 366) * (3 if shifts are enabled; 1 if
shifts are not enabled)

3. Weekly rows retained per year is: 52 * (3 if shifts are enabled; 1 if shifts are
not enabled) * (3 if vacations are enabled; 1 if vacations are not enabled)

4. Monthly rows retained per year is: 12 * (3 if shifts are enabled; 1 if shifts
are not enabled) * (3 if vacations are enabled; 1 if vacations are not
enabled)

5. Quarterly rows retained per year is: 4 * (3 if shifts are enabled; 1 if shifts
are not enabled) * (3 if vacations are enabled; 1 if vacations are not
enabled)

6. Yearly rows retained per year is: 1 * (3 if shifts are enabled; 1 if shifts are
not enabled) * (3 if vacations are enabled; 1 if vacations are not enabled)

Category Default
retention unit

Rows
retained/unit

Default
period

Total rows
retained

Detailed Day 288 7 days 2016 rows

Hourly Month 744 3 months 2232 rows

Daily Year 365 1 year 365 rows

Weekly Year 52 2 years 104 rows

Monthly Year 12 3 years 36 rows

Quarterly Year 4 3 years 12 rows

Yearly Year 1 3 years 3 rows

104 Tivoli Management Services Warehouse and Reporting

hourly category is particularly row-intensive, because it requires 744 rows of
aggregated data per month per instance.

If warehouse space is an issue, consider reducing the default periods of the
more detailed time-based categories, especially the hourly category. Reducing
the retention period of the hourly category from 3 months to 2 months can result
in a 15% reduction in the saturated size of the warehouse. In a large-scale
environment, this can be a significant reduction.

The Summarization and Pruning agent does not maintain the
WAREHOUSELOG table or the other utility tables found in the data warehouse.
The system administrator or the warehouse database administrator (DBA) has to
purge old entries in these tables manually.

2.10.2 Tivoli Summarization and Pruning agent step by step

When the Tivoli Summarization and Pruning agent is configured and set up, it
checks its schedule every 5 minutes. If the schedule is ready within 5 minutes,
then the Tivoli Summarization and Pruning agent starts its work.

The Tivoli Summarization and Pruning agent starts its work by retrieving the
metadata from the Tivoli Enterprise Portal Server. This metadata is retrieved:

� Per product, table

– Hour, day, week, month, quarter, year summarization
– Pruning metadata for raw, hour, day, week, month, quarter, year

� Per column

– Minimum, maximum, average, sum, total, high, low, latest, earliest

When this is complete, the agent reads some settings from the environment file.
These settings include features such as shift and vacation settings. The agent
then checks if the tables defined by the Tivoli Enterprise Portal Sever metadata
is created by the Warehouse Proxy. For the raw tables, the agent determines
where it finished its last run. The new data is selected into memory. The
Summarization and Pruning agent processes one attribute group at a time. For a
given attribute group, it iterates over all the MSNs (Managed System Node, also
called Originnode or simply Node) that exist for the attribute group in the raw
table. It then aggregates the data for a given row for a given MSN and places that
summarized information into the database. It then moves to the next row and
eventually the next MSN.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 105

2.10.3 Tivoli Summarization and Pruning agent scheduling

The Tivoli Summarization and Pruning agent can be configured to start
processing data from the warehouse at a specific hour and minute. The
KSY_MINUTE_TO_RUN, KSY_HOUR_TO_RUN, and KSY_HOUR_AM_PM
environment variables can be modified in the Summarization and Pruning
agent’s environment file to modify its schedule. The processing of historical data
by the Summarization and Pruning agent imposes a noticeable impact on the
performance of the warehouse database, therefore Summarization and Pruning
agent processing runs must take place when queries to the warehouse are
unlikely to occur.

How often the Summarization and Pruning agent runs is just as important as
when it runs. The KSH_EVERY_N_DAY environment variable specifies how
many days must elapse between Summarization and Pruning agent data
processing sessions. For large-scale environments, it is important that
aggregation and pruning of the data in the warehouse occurs every day. This
ensures that excess data is not retained past any pruning periods. Also, if
aggregation is performed every day, the new detailed data is processed during
sessions that are shorter and more manageable. Set KSH_EVERY_N_DAY to 1
to schedule daily runs.

2.10.4 Tivoli Summarization and Pruning agent processing and time
considerations

The IBM Tivoli Monitoring 6.1/Tivoli Data Warehouse 2.1 Warehouse Load
Projections spreadsheet provides estimates regarding the size of the warehouse
at its saturation point, provided a configuration is specified for the Summarization
and Pruning agent. The spreadsheet does not provide an estimate of how long
the Summarization and Pruning agent takes to perform a run. If the
Summarization and Pruning agent must run longer than 24 hours to process a
day’s worth of new data. it cannot keep up with the requirements of the
warehouse. A continuously running Summarization and Pruning agent can
impact the performance of the warehouse. This can affect the ability of the
Warehouse Proxy agent to insert new historical data and the performance of any
query run against the warehouse through the TEP. Even processing runs that
last longer than a few hours can be disruptive, especially during times when
access to the historical data is a priority. See 2.10.3, “Tivoli Summarization and
Pruning agent scheduling” on page 106, for instructions about how to set the run
time and frequency of the Summarization and Pruning agent.

Examine the RAS log of the Summarization and Pruning agent’s JVM to obtain
the length of time that it takes for a run to complete. The Summarization and
Pruning agent logs the entries shown in Example 2-4 to indicate the start and the

106 Tivoli Management Services Warehouse and Reporting

end of historical data processing (see 8.2, “Summarization and Pruning agent”
on page 475 for Summarization and Pruning agent troubleshooting).

Example 2-4 RAS log

== 2006-05-24 02.00.00.012 -0500 : Trace resumed, level: 1, maxFiles:5,
maxLines: 300000, sqlDump: false
== 761 t=main Summarization and pruning agent started
== 762 t=main Next scheduled time is within 60 seconds so start now
== 763 t=main PARA0040 aggProduct:
.
.
.
== 871 t=main Summarization and pruning agent successfully ended
== 2006-05-24 02.00.41.891 -0500 : Trace paused

Compare the start time to the end time to determine the total elapsed time of the
processing run. The start and end times can be found on the lines that contain
the Trace resumed and Trace paused entries.

If the RAS log exhibits run times that are unacceptable, use the performance
tuning suggestions described in 2.10.5, “Tivoli Summarization and Pruning agent
performance tuning”. Also, ensure that the warehouse’s database is properly
configured using the guidelines presented in 2.9, “Tivoli Warehouse Proxy” on
page 94. It might be necessary to upgrade the hardware used by the Tivoli Data
Warehouse if an acceptable run time is not realized.

2.10.5 Tivoli Summarization and Pruning agent performance tuning

The Summarization and Pruning agent is a multi-threaded, Java-based
application. It interacts with the warehouse using a JDBC driver appropriate to
the warehouse’s database. The number of threads and the heap size of the JVM
affect the performance of the Summarization and Pruning agent and the length of
time of its processing runs. The installation location of the Summarization and
Pruning agent is another important aspect of Summarization and Pruning agent
performance tuning.

The number of worker threads started by the Summarization and Pruning agent
for the purpose of performing the summarization and pruning tasks can be set
using the KSY_MAX_WORKER_THREADS environment variable. The
suggested number of worker threads is one less than the number of processors
on the host system, but configuring more threads than attribute groups does not
decrease the processing time.

 Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations 107

Increase the JVM heap size as the daily amount of data collected by the
Warehouse Proxy agent increases. The suggested values are 512 MB for
collection rates of 10 GB a day and 1536 MB for collection rates of 25 GB a day.
The heap size can be set for the Summarization and Pruning agent by specifying
a value for the –Xmx Java option in the KSZ_JAVA_ARGS environment variable.

Install the Summarization and Pruning agent on the same host as the warehouse
to minimize network communication. Multiple Summarization and Pruning agents
are not supported, therefore distributing the processing loads across multiple
hosts is not possible. Co-locating the Summarization and Pruning agent with the
warehouse eliminates wait times that are induced while performing SQL calls
across a network. If the Summarization and Pruning agent cannot be installed on
the warehouse database server, ensure that there is a high-speed network
connection between them (100 Mbps or higher).

Note: Set the Summarization and Pruning agent environment variables in the
KSYENV file in %CANDLEHOME%\TMAITM6 on Windows and in the sy.ini
file in $CANDLEHOME/config on UNIX and Linux.

108 Tivoli Management Services Warehouse and Reporting

Chapter 3. Warehousing in action

In addition to IBM Tivoli Monitoring and the monitoring agents, there are a
number of other Tivoli products that use the Tivoli Data Warehouse Version 2.1.
This chapter provides step-by-step procedures on how to customize these Tivoli
products to integrate with the Tivoli Data Warehouse V2.1. In the future, you can
expect to see even more Tivoli products to use the Tivoli Data Warehouse
architecture. This chapter contains the following topics:

� “Overview of the lab environment for this book” on page 110

� “Configuring the Tivoli Warehouse Proxy” on page 111

� “Configuring multiple Warehouse Proxies” on page 126

� “Configuring the Summarization and Pruning agent” on page 128

� “Configuring historical data collection” on page 147

� “Tivoli Enterprise Console and Data Warehouse integration” on page 151

� “Configuring IBM Tivoli Service Level Advisor and Tivoli Data Warehouse
integration” on page 167

� “IBM Tivoli Composite Application Manager for Response Time Tracking and
Tivoli Data Warehouse integration” on page 188

� “IBM Tivoli Composite Application Manager for WebSphere and Tivoli Data
Warehouse integration” on page 201

� “Tivoli Composite Application Manager for SOA and Tivoli Data Warehouse
integration” on page 219

3

© Copyright IBM Corp. 2007. All rights reserved. 109

3.1 Overview of the lab environment for this book

In this book, we have created all charts and reports using data gathered from our
lab environment. In this lab environment, we used a mixture of Windows, AIX,
and Linux servers, a variety of agents, and some non-IBM Tivoli Monitoring
products. Figure 3-1 gives a overview of the servers that we used and the agents
and Tivoli Data Warehouse sources that we configured on each.

Figure 3-1 Lab environment for this book

110 Tivoli Management Services Warehouse and Reporting

Table 3-1 provides the hardware and software details our lab environment.

Table 3-1 Lab environment for this book

3.2 Configuring the Tivoli Warehouse Proxy

The Warehouse Proxy is used to upload historical data from agents into the
Tivoli Enterprise Data Warehouse for historical reporting. The Warehouse Proxy
agent installation is described in more detail in the IBM Tivoli Monitoring
Installation and Setup Guide, GC32-9407.

This section describes the steps for configuring a Warehouse Proxy agent. The
Tivoli Data Warehouse requires a relational database to store the historical data.
DB2 UDB is the preferred database, but Microsoft SQL and Oracle are also
supported. The product ships with a copy of DB2 UDB.

Host name Operating system (OS) CPU RAM Hard disk

berlin Windows 2003 3 GHz 2 GB 40 GB

belfast AIX 5.3 400 MHz 512 MB 9 GB

oslo Red Hat AS 4 1.5 GHz 1 GB 9 GB

ankara SUSE 9 1.5 GHz 1 GB 9 GB

rome AIX 5.3 375 MHz 896 MHz 9 GB

edinburg Windows 2000 1.5 GHz 256 MB 30 GB

lizbon Windows 2000 1.5 GHz 256 MB 30 GB

prov006 Windows 2000 1.5 GHz 256 MB 30 GB

toronto Windows 2003 2.4 GHz 1.5 GB 40 GB

br AIX 5.3 400 MHz 512 MB 9 GB

nice Windows 2003 3 GHz 1.5 GB 75 GB

florence Windows 2003 3 GHz 256 MB 75 GB

rttserver Red Hat AS 1.5 GHz 1 GB 9 GB

Note: ITMUser is the default user in the Warehouse Proxy agent, but can be
changed if needed.

 Chapter 3. Warehousing in action 111

Database configuration prerequisites
Use the following recommendations when you install relational database
management system (RDBMS) on DB2 or Oracle.

� DB2

You must use at least DB2 V8.2 Fix Pack 10 (FP 10). You also have to set the
environment variable DB2CODEPAGE=1208 as a system environment on
the Windows machine where the Warehouse Proxy is installed.

You can find the DB2 fix packs at the following Web site:

http://www.ibm.com/software/data/db2/udb/support/downloadv8.html

� Oracle

If you have Oracle 9.2, you must upgrade the Open Database Connectivity
(ODBC) driver to Version 9.2.0.4. Set the environment variable
NLS_LANG=AMERICAN_AMERICA.AL32UTF8 as a system environment on
the Windows machine where the Warehouse Proxy is installed.

The Web site for Oracle ODBC drivers:

http://www.oracle.com/technology/software/tech/windows/odbc/htdocs/u
tilsoft.html

112 Tivoli Management Services Warehouse and Reporting

http://www-306.ibm.com/software/data/db2/udb/support/downloadv8.html
http://www.oracle.com/technology/software/tech/windows/odbc/htdocs/utilsoft.html
http://www.oracle.com/technology/software/tech/windows/odbc/htdocs/utilsoft.html
http://www.ibm.com/software/data/db2/udb/support/downloadv8.html

3.2.1 On a Windows system

The first step in the configuration of the Warehouse Proxy is to configure it to
connect to the database to insert and retrieve data from the database. To perform
the Warehouse Proxy agent configuration on a Windows system, perform the
following steps:

1. From the Manage Tivoli Enterprise Monitoring Services console, right-click
the Warehouse Proxy and select Reconfigure.

2. The message shown in Figure 3-2 opens. Click OK.

Figure 3-2 Windows informational display

 Chapter 3. Warehousing in action 113

3. Configure the protocol communication between the Tivoli Enterprise Monitoring
Server and the Warehouse Proxy, as shown in Figure 3-3. Click OK.

Figure 3-3 Windows Warehouse Proxy agent: Configuration of communication protocol

4. Configure the hub Tivoli Enterprise Monitoring Server host name and the
ports where the Warehouse Proxy connect, as shown in Figure 3-4. Click OK.

Figure 3-4 Windows Warehouse Proxy agent hub Tivoli Enterprise Monitoring Server and port configuration

114 Tivoli Management Services Warehouse and Reporting

5. The window shown in Figure 3-5 opens. Click Yes.

Figure 3-5 Windows Tivoli Monitoring Warehouse ODBC configuration confirmation message

6. Select the database for the Warehouse Proxy agent that you want to use, as
shown in Figure 3-6.

Figure 3-6 Windows database selection for Warehouse Proxy configuration

Note: Selecting Other database type is not supported. It is reserved for
future use.

 Chapter 3. Warehousing in action 115

7. The window shown in Figure 3-7 opens. Enter the necessary information for
the following fields:

– Data Source Name: You can leave as ITM Warehouse or change if
needed. If you want to change this default, you should create your own
ODBC data source using the Windows ODBC Data Source Administrator
panel. Then you have to set the exact name of the ODBC data source
created with this panel in the Tivoli Configuration panel. If your database is
remote, you have to create your own ODBC data source and you have to
catalog your remote database.

– Database Name: The name of the database that the Warehouse Proxy
agent will use to store the data

– Admin User ID: The database user administrator created during database
installation (default is db2admin for DB2). This user (which should already
exist) is used to create the Tivoli Data Warehouse database.

– Admin Password: The user database administrator password

– Database User ID: The user ID that will own the table made to store
warehouse data

This user must be created on the OS first. The default user is ITMUser.

– Database Password: The password of the Database user ID

Click OK.

116 Tivoli Management Services Warehouse and Reporting

Figure 3-7 Windows data source configuration window for the Warehouse Proxy

Note: After this step is completed, a local database will be created only if
the data source does not exist already. The status tables
(WAREHOUSELOG, WAREHOUSEID, UTF8TEST) are created when the
Warehouse Proxy agent is started. The application tables are created
when the Warehouse Proxy agent exports data to the Tivoli Data
Warehouse.

 Chapter 3. Warehousing in action 117

8. The pop-up window shown in Figure 3-8 opens. It shows the message that
the Data Warehouse configuration was successfully completed. Click OK.

Figure 3-8 Windows warehouse configuration status message

9. In the new window (Figure 3-9), click Yes to complete the configuration.

Figure 3-9 Windows Warehouse Proxy database configuration completion

10.Restart the Warehouse Proxy agent by double-clicking it.

3.2.2 On a Linux or an AIX system

Fix Packs 002 and 003 add support for the Warehouse Proxy agent on AIX and
Linux. The Warehouse Proxy on AIX and Linux uses a Java Database
Connectivity (JDBC) connection to export data collected from IBM Tivoli
Monitoring agents to the Tivoli Data Warehouse.

Important: The default ODBC data source name is stored in the Windows
registry in the the string ODBCDATASOURCE, at the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\CANDLE\KHD\Ver610\Primary\Environment.

Rather than changing this entry directly, if you want to change the default
ODBC data source name, use the Windows ODBC Data Source Administrator
panel.

Important: An X Window System is required to configure the Warehouse
Proxy on AIX or Linux.

118 Tivoli Management Services Warehouse and Reporting

The JDBC driver JAR files that come with your database product must be located
on the computer where you installed the Warehouse Proxy agent.

� If you are using DB2 for your Tivoli Data Warehouse database, the JDBC
driver files are included with the database product installation. If your Tivoli
Data Warehouse is located on a remote computer, copy the driver files to the
local computer (the computer where you installed the Warehouse Proxy
agent).

� If you are using Oracle or Microsoft SQL Server for your Tivoli Data
Warehouse database, download the driver files from the company Web site to
the computer where you installed the Warehouse Proxy agent.

Table 3-2 shows the location of the driver files for each database product. Copy
or download the files to any directory on the computer where the Warehouse
Proxy agent is installed.

Table 3-2 The location of the JDBC driver files

Database product JDBC driver files

IBM DB2 The DB2 driver files are located with your DB2 installation in the following
directories:
<db2installdir>/java/db2jcc.jar <db2installdir>/java/db2jcc_license_cu.jar

Here <db2installdir> is the directory where DB2 is installed. The default DB2
Version 8 installation directory is as follows:
� On AIX: /usr/opt/db2_08_01
� On Linux: /opt/IBM/db2/V8.1

Oracle Obtain the Oracle JDBC driver from the following Web site:

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.htm
l

Download the ojdbc14.jar file. This file supports Java Runtime Environment 1.4.2
(JRE™ 1.4.2) or later, the required Java Runtime Environment for IBM Tivoli
Monitoring.

Microsoft SQL
Server

Use the Microsoft SQL Server 2005 Driver to connect to a Tivoli Data Warehouse
on either SQL Server 2000 or SQL Server 2005. (The SQL Server 2005 JDBC
Driver works with a Tivoli Data Warehouse on SQL Server 2000. Note that SQL
Server 2000 JDBC drivers are not supported with Tivoli Data Warehouse). Obtain
the 2005 JDBC driver from the following Microsoft Web page:

http://msdn.microsoft.com/data/jdbc/default.aspx

Download and install the driver to the computer where you installed the Warehouse
Proxy Agent. Follow the instructions on the Microsoft download page for installing
the driver. After you install the driver, the JAR file name and location are as follows:

<base-dir>\sqljdbc_1.0\enu\sqljdbc.jar

 Chapter 3. Warehousing in action 119

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://msdn.microsoft.com/data/jdbc/default.aspx

After you install the JDBC drivers, you are ready to configure the Warehouse
Proxy agent. The purpose of the configuration is to establish the JDBC
connection between the Warehouse Proxy agent and the Tivoli Data Warehouse,
and to register the Warehouse Proxy agent with the Tivoli Enterprise Monitoring
Server.

1. Log on to the computer where the Warehouse Proxy agent is installed.

2. Start the Manage Tivoli Enterprise Monitoring Services utility:

a. Change to the bin directory:

cd install_dir/bin

b. Run the following command:

./itmcmd manage [-h ITMinstall_dir]

In this command, -h is an optional attribute that is used to specify the
installation directory. ITMinstall_dir is the directory where the Warehouse
Proxy agent is installed. The default installation directory is /opt/IBM/ITM.

3. The Manage Tivoli Enterprise Monitoring Services window opens, as shown
in Figure 3-10. Right-click Warehouse Proxy and select Configure.

Figure 3-10 Linux and AIX monitoring services window

Note: The Platform column for agents lists the platform that the binary
code was built on, not the platform that you are running on.

120 Tivoli Management Services Warehouse and Reporting

4. The Configure Warehouse Proxy window opens, as shown in Figure 3-11. In
the TEMS Connection tab, enter the information about the Tivoli Enterprise
Monitoring Server to which the Warehouse Proxy agent connects:

a. Enter the host name of the monitoring server in the TEMS Hostname field.
(If the field is not active, clear the No TEMS check box.)

b. Select the communications protocol that the monitoring server uses from
the Protocol drop-down list.

c. Enter the port number of the monitoring server in the Port Number field.

Figure 3-11 Linux and AIX Warehouse Proxy configuration window

 Chapter 3. Warehousing in action 121

5. In the Agent Parameters tab (Figure 3-12 on page 125), perform the following
steps.

a. Add the names and directory locations of the JDBC driver JAR files to the
JDBC Drivers field.

i. Use the scroll bar at the bottom of the window to display the Add and
Delete buttons, which are located to the right of the JDBC Drivers field.
Click Add to display the file browser window. Navigate to the location
of the driver files on your computer and select the driver files for your
database product. See Table 3-4 on page 123 for the names of the
driver files to add.

ii. Click OK to close the browser window and add the JDBC driver files to
the list. If you want to delete an entry from the list, select the entry and
click Delete.

b. In the Database drop-down list, select the database product that you are
using for the Tivoli Data Warehouse.

c. Change the default value displayed in the Warehouse URL field if it is not
correct. Table 3-3 lists the default Tivoli Data Warehouse URLs for the
different database products.

Table 3-3 Tivoli Data Warehouse URLs

If the Tivoli Data Warehouse is installed on a remote computer, specify the
host name of the remote computer instead of localhost. Change the port
number if it is different. If the name of the Tivoli Data Warehouse database
is not WAREHOUS, replace WAREHOUS with the actual name.

d. Verify the JDBC driver name, which is displayed in the Warehouse Driver
field.

Database product Warehouse URL

IBM DB2 jdbc:db2://localhost:60000/WAREHOUS

Oracle jdbc:oracle:thin:@localhost:1521:WAREHOUS

Microsoft SQL Server 2000 jdbc:Microsoft:sqlserver://localhost:1433;databaseName=WAREHOUS

Microsoft SQL Server 2005 jdbc:sqlserver://localhost:1433;databaseName=WAREHOUS

Note: The Warehouse Driver field displays the driver name, in contrast
to the driver JAR files that are listed in the JDBC Drivers field.

122 Tivoli Management Services Warehouse and Reporting

Table 3-4 lists the JDBC driver names for each database product:

Table 3-4 JDBC driver names

e. If necessary, change the entries in the Warehouse User and Warehouse
Password fields to match the user name and password that were created
for the Tivoli Data Warehouse.

f. Select the Use Batch check box if you want the Warehouse Proxy agent
to submit multiple execute statements to the Tivoli Data Warehouse
database for processing as a batch.

In some situations, such as crossing a network, sending multiple
statements as a unit is more efficient than sending each statement
separately. Batch processing is one of the features provided with the
JDBC 2.0 application programming interface (API).

Database product JDBC driver name

IBM DB2 com.ibm.db2.jcc.DB2Driver

Oracle oracle.jdbc.driver.OracleDriver

Microsoft SQL Server com.microsoft.sqlserver.jdbc.SQLServerDriver

Note: The SQL Server name given in Table 3-4 is the name of the
recommended 2005 SQL Driver. The name of the 2000 SQL Driver was
com.microsoft.jdbc.sqlserver.SQLServerDriver. Note the reversal of the
string jdbc.sqlserver.

Important: The default user name is itmuser and the default password
is itmpswd1.

Note: Select this check box only if you are using a JDBC driver that
supports the batch option. If you select the check box when using a
JDBC driver that does not support batch, the Warehouse Proxy agent
fails.

 Chapter 3. Warehousing in action 123

g. Click Test database connection to ensure that you can communicate
with the Tivoli Data Warehouse database. Test database connection
button has to report success. If it does not, the Warehouse Proxy agent is
not going to work.

h. Click Save.

Note: If you are using DB2 and you receive the following error, you
might have to add the path to the DB2 JDBC driver to your PATH
environment variable:

Database connection failed. The version of the IBM Universal
JDBC driver in use is not licensed for connectivity to QDB2/NT
databases.

To address this, add the following statement to the PATH environment
variable definition:

/usr/opt/db2_08_01/java

Stop and restart the Manage Tivoli Enterprise Monitoring Services utility
when this complete.

124 Tivoli Management Services Warehouse and Reporting

Figure 3-12 Linux and AIX agent parameters tab

6. Start the Warehouse Proxy agent by performing one of the following actions:

– To start from the Manage Tivoli Enterprise Services window, right-click
Warehouse Proxy and select Start.

– To start the Warehouse Proxy agent from the command line, enter the
following command:

./itmcmd agent start hd

In this command, hd is the product code for the Warehouse Proxy agent.

 Chapter 3. Warehousing in action 125

3.3 Configuring multiple Warehouse Proxies

Fix Pack 003 introduces support for multiple Warehouse Proxies within a single
hub monitoring server environment. The provision for multiple Warehouse
Proxies provides for greater scalability and performance in historical data
collection.

The support for multiple Warehouse Proxies has the following important features:

� All Warehouse Proxy agents within a single hub monitoring server
environment export data to a single Tivoli Data Warehouse.

� Each Warehouse Proxy agent is associated with a subset of monitoring
server instances that you specify when you configure the proxy agent. Each
Warehouse Proxy exports data only for monitoring agents that report to one
of the monitoring servers on the specified list.

The following sequence of events explains how the monitoring agents, which
collect the data for historical reports, know which Warehouse Proxy agent to use:

1. When a Warehouse Proxy agent starts, it registers with the global location
broker on the hub monitoring server, and sends it the list of monitoring
servers that it is configured to serve. This registration process is repeated
every hour.

2. Each monitoring server queries the global location broker at regular intervals
to determine which Warehouse Proxy it is associated with. The monitoring
server then sends the address of this Warehouse Proxy to all of its child
monitoring agents to use during historical data exports. You can change the
default query interval of 60 minutes to some other value.

When a Warehouse Proxy agent registers with the global location broker, it is
registered as the default proxy agent if no other proxy agent is already
configured as the default. When a monitoring server queries the global location
broker for its associated Warehouse Proxy, the default proxy agent is used if that
monitoring server is not in the list of servers for any proxy agent.

Note: The procedure for installing a proxy agent into an environment with
multiple proxy agents is the same as the procedure for installing a single proxy
agent.

126 Tivoli Management Services Warehouse and Reporting

To install and configure each Warehouse Proxy agent, perform the following
steps:

1. Associate each proxy agent with the list of monitoring servers that you want
the proxy agent to serve:

a. Open the environment file for the proxy agent:

• Windows: ITMinstall_dir\TMAITM6\KHDENV
• Linux: ITMinstall_dir/config/hd.ini

Where ITMinstall_dir is the directory where you installed the product.

b. Add the environment variable KHD_WAREHOUSE_TEMS_LIST to the file
and set it to specify a space-delimited list of monitoring server instance
names. For example:

KHD_WAREHOUSE_TEMS_LIST=REMOTE_TEMS1 REMOTE_TEMS2

The name of a monitoring server is specified when the server is installed.
The default name of a monitoring server is HUB_host_name (for a hub
monitoring server) or REMOTE_host_name (for a remote monitoring
server), where host_name is the short host name.

2. Optionally, modify the interval at which a monitoring server queries the global
location broker to determine which Warehouse Proxy it is associated with:

a. Open the environment file for the monitoring server:

• Windows: ITMinstall_dir\CMS\KBBENV
• UNIX or Linux: ITMinstall_dir/config/ms.ini

Where ITMinstall_dir is the directory where you installed the product.

b. Change the following entry to specify a different query interval:

KPX_WAREHOUSE_REGCHK=60

The query interval is specified in minutes. The default value is 60 minutes.

3. Start the Warehouse Proxy agent.

– To start a Warehouse Proxy agent on Windows or Linux from the Manage
Tivoli Enterprise Services window, right-click Warehouse Proxy and
select Start.

– To start a Warehouse Proxy agent on Linux, from the command line, enter
the following command:

./itmcmd agent start hd

In this command, hd is the product code for the Warehouse Proxy agent.

 Chapter 3. Warehousing in action 127

Verifying the configuration
Use the following trace settings to verify the configuration:

� To verify that a Warehouse Proxy is registering with the hub monitoring server
and placing the correct entries into the global location broker:

a. Open the environment file for the proxy agent:

• Windows: ITMinstall_dir\TMAITM6\KHDENV
• Linux: ITMinstall_dir/config/hd.ini

Where ITMinstall_dir is the directory where you installed the product.

b. Add the following entry to the KBB_RAS1 trace setting:

KBB_RAS1=ERROR(UNIT:khdxrpcr STATE)

This setting prints the value of KHD_WAREHOUSE_TEMS_LIST and
shows any errors associated with its components.

� To determine which Warehouse Proxy a particular monitoring server uses for
its agents:

a. Open the environment file for the monitoring server:

• Windows: ITMinstall_dir\CMS\KBBENV
• UNIX or Linux: ITMinstall_dir/config/ms.ini

Where ITMinstall_dir is the directory where you installed the product.

b. Add the following entry to the KBB_RAS1 trace setting:

KBB_RAS1=ERROR(UNIT:kprwhpx STATE)

This setting prints entries in the RAS log of the monitoring server when a
registration change occurs. The entry specifies the name and address of
the new Warehouse Proxy agent that the monitoring server is using.

3.4 Configuring the Summarization and Pruning agent

The Summarization and Pruning agent is responsible for aggregating historical
data and for pruning the size of the database according to the required
guidelines. This section focuses on how to configure the Summarization and
Pruning agent.

128 Tivoli Management Services Warehouse and Reporting

3.4.1 On a Windows system

To configure the Summarization and Pruning agent on a Windows system,
perform the following steps:

1. From your Windows desktop, click Start → Programs → IBM Tivoli
Monitoring → Manage Tivoli Enterprise Monitoring Services.

2. Right-click Warehouse Summarization and Pruning Agent. Select
Reconfigure, as shown in Figure 3-13.

Figure 3-13 Configuring Summarization and Pruning agent through monitoring console

3. In the Advanced Configuration window, click OK, as shown in Figure 3-14.

Figure 3-14 Configuring Summarization and Pruning agent connection protocol

 Chapter 3. Warehousing in action 129

4. In the new window that opens, click OK.

5. In the Warehouse Summarization and Pruning Agent window (Figure 3-15),
click Yes to configure the Summarization and Pruning agent.

Figure 3-15 Summarization and Pruning agent configuration confirmation

6. The Configure Summarization and Pruning Agent window is displayed, as
shown in Figure 3-16 on page 131. In the Sources tab, enter the Tivoli Data
Warehouse database and Tivoli Enterprise Portal server information. Use the
following procedure to update the information:

a. In the JDBC Drivers field:

i. Click Add to open the file browser window to select your JDBC driver.
The default is DB2: C:\Program Files\IBM\SQLLIB\java\db2java.zip.

ii. Click OK to close the browser and add the JDBC drivers to the list.

To delete a driver, highlight its entry in the JDBC drivers list and click
Delete.

Use this method to collect JDBC drivers to communicate with your
Tivoli Data Warehouse database. JDBC drivers are installed
separately and each database provides a set of these JDBC drivers.

Important: Use only the type 4 DB2 JDBC driver (because the DB2
legacy driver (type 2) will soon be obsolete). Moreover, the type 4
driver does not need the DB2 client to be installed, which is
convenient when the database is remote.

� The type 4 driver uses these files: db2jcc.jar,
db2jcc_license_cu.jar.

� The type 2 driver is uses this file: db2java.zip.

This implies that you have change the default settings in the
Windows Summarization and Pruning configuration panel (see
Figure 3-16 on page 131). You should also change the Warehouse
driver parameter to: com.ibm.db2.jcc.DB2Driver, which is not the
default.

130 Tivoli Management Services Warehouse and Reporting

b. Enter the Warehouse URL, Driver, Schema, user ID, and password. Note
that the Warehouse URL is in the following format: "jdbc:+ instance name
+ database name”. As for the user ID, you can use the default database
user that is created (ITMUser) when installing Tivoli Data Warehouse or
any other user as long as this user is defined in the RDBMS server.

c. Click Test database connection to ensure that you can communicate
with your Tivoli Data Warehouse database. Remember, Test database
connection button has to report success.

d. Enter the Tivoli Enterprise Portal Server host and port. It is very important
to provide the correct host name and port.

Figure 3-16 Configuring Summarization and Pruning agent

 Chapter 3. Warehousing in action 131

7. Click the Defaults tab and select the settings for your summarization and
pruning information, as shown in Figure 3-17 on page 133.

If you click Reset, all settings in this window return to the default settings.

a. If you do not want to use the defaults, select the appropriate time periods
that you want in the Summarization section to change your summarization
values.

b. To change your Pruning settings:

i. Select the time periods for the pruning of your data: Keep yearly data
for, Keep quarterly data for, and so on.

ii. In the next field, enter the value for the time periods that you want.

iii. Select the time period that you want. For example, if you want to prune
hourly data when it becomes 30 days old, select Hourly, specify 30,
and choose Days as the time period from the drop-down list.

c. To keep the changes that you make, select the Apply settings to default
tables for all agents check box.

Important: The defaults specified in this panel are only configured the first
time that the Summarization and Pruning agent is started. If you start the
Summarization and Pruning agent and then reconfigure the agent and
change these settings, they have no effect.

Important: We recommend that you do not select the “Apply settings to
default tables for all agents” check box as it may generate more tables
in the Tivoli Data Warehouse database than you really need. For
instance, the Linux agent has the Linux_Process table set as a default
table. A large amount of data is generated for this table and may cause
performance issue if you have not planned to reserve enough space in
your Tivoli Data Warehouse database.

Also, for the ITM5 integration agents, all the tables of all the ITM5
agents are considered as default. This also may be more than what you
really need.

132 Tivoli Management Services Warehouse and Reporting

Figure 3-17 Configuring the data collection and pruning

8. Click the Scheduling tab and select the scheduling information, as shown in
Figure 3-18.

a. Schedule the agent to run every x days.

b. Select the hour of the day when you want the summarization to run. The
default is to run every day at 2 a.m.

 Chapter 3. Warehousing in action 133

Figure 3-18 Scheduling the data collection and pruning

9. Click the Work Days tab (Figure 3-19 on page 135) and specify shift
information and vacation settings:

a. Select the day the week starts on.

b. If you want to specify shifts, select Specify shifts. The default settings for
this field are listed in the Peak Shift Hours field on the right side of the
window. To change these settings, select the hours that you want in the
Off Peak Shift Hours field and click the right arrow button to add them to
the Peak Shift Hours field.

c. To change your vacation settings, select Specify vacation days. If you do
not want to set your vacation days, clear this check box.

d. Select Yes to count weekends as vacation days.

Note: Changing the shift information after the data is summarized can
create an inconsistency in the data. Data that is collected and
summarized cannot be recalculated with the new shift values.

134 Tivoli Management Services Warehouse and Reporting

e. To add vacation days, click Add and select the vacation days that you
want to add from the calendar.

f. The days that you select are displayed in the field below the Count
weekends as vacation field. If you want to delete any days that you have
previously chosen, select them and click Delete.

Figure 3-19 Defining shift periods and vacation settings

10.Click the Additional Parameters tab (Figure 3-20):

a. Specify the age of the hourly and daily data that you want summarized.
Values are 0 through n. The default is 1 for hourly data and 0 for daily
data.

b. Specify the maximum number of rows that can be deleted in a single
database transaction. The values are 1 through n. The default is 1000.

 Chapter 3. Warehousing in action 135

c. Choose the time zone that you want to use from the drop-down list. If the
Tivoli Data Warehouse and agents that are collecting data are all not in
the same time zone, and all the data is stored in the same database, use
this option to identify the time zone that you want to use.

Figure 3-20 Configuring additional parameters

136 Tivoli Management Services Warehouse and Reporting

11.In the next window, to save your configuration, click Yes, as shown in
Figure 3-21.

Figure 3-21 Saving the Summarization and Pruning agent configuration

12.Restart the Summarization And Pruning agent by double-clicking it.

To change the default data summarization, pruning configurations, or both after
installing the Summarization and Pruning agent, use the History Collection
Configuration window in the Tivoli Enterprise Portal.

 Chapter 3. Warehousing in action 137

3.4.2 On a Linux or a UNIX system

To configure the Summarization and Pruning agent on AIX or Linux, perform the
following steps:

1. On a Linux or UNIX system, cd to install_dir/bin and type:

./itmcmd manage

2. Right-click Summarization and Pruning Agent and select Configure, as
shown in Figure 3-22.

Figure 3-22 Configuring Summarization and Pruning agent through monitoring console

Important: An X Window System is required to configure the Summarization
and Pruning agent on AIX or Linux.

Note: For more details about this command, run this phrase: itmcmd
manage ?. Alternatively, see the IBM Tivoli Monitoring Installation and
Setup Guide, GC32-9407.

138 Tivoli Management Services Warehouse and Reporting

3. In the Configure Summarization and Pruning Agent window (Figure 3-23),
review the TEMS Connection settings. Click the Agent Parameters tab.

Figure 3-23 Summarization and Pruning agent connection protocol

Note: The buttons Save, Reload, and Cancel are visible only on a UNIX or
Linux system:

� Click Save after you have completed all your settings correctly.

� Click Reload to reload the original values.

� Click Cancel, at any time, to cancel out of the Configure Summarization
and Pruning Agent window. You are prompted to save any data that
you have changed.

 Chapter 3. Warehousing in action 139

4. In the Sources tab (Figure 3-24 on page 141), enter the Tivoli Data
Warehouse database and Tivoli Enterprise Portal server information. Most of
the fields in this window have default options. Before performing any update,
confirm that the default configuration is accurate. Use the following procedure
to update the information:

a. In the JDBC drivers field:

i. Click Add to open the file browser window to select your JDBC driver.

ii. Click OK to close the browser and add the JDBC drivers to the list. To
delete a driver, highlight the entry in the JDBC drivers list and click
Delete.

Use this method to collect JDBC drivers to communicate with your
Tivoli Data Warehouse database. JDBC drivers are installed
separately and each database provides a set of these JDBC drivers.

b. Enter the Warehouse URL, Driver, Schema, user ID, and password.

c. Click Test database connection to ensure that you can communicate
with your Tivoli Data Warehouse database.

d. Enter the Tivoli Enterprise Portal Server host and port if you do not want to
use the defaults.

140 Tivoli Management Services Warehouse and Reporting

Figure 3-24 Configuring Summarization and Pruning agent

5. Click the Defaults tab (Figure 3-25 on page 142) and select the settings for
your summarization and pruning information.

a. If you do not want to use the defaults, select the appropriate time periods
that you want in the Summarization section to change your summarization
values.

b. To change your pruning settings:

i. Select the time periods for the pruning of your data: Keep yearly data
for, Keep quarterly data for, and so on.

ii. In the next field, enter the value for the time periods that you want.

iii. Select the time period that you want. For example, if you want to prune
hourly data when it becomes 30 days old, select Hourly, specify 30,
and choose Days as the time period from the drop-down list.

 Chapter 3. Warehousing in action 141

c. To keep the changes that you make, select the Apply settings to default
tables for all agents check box.

Figure 3-25 Configuring the data collection and pruning

Important: We recommend that you do not select the “Apply settings to
default tables for all agents” check box as it may generate more tables
in the Tivoli Data Warehouse database than you really need. For
instance, the Linux agent has the Linux_Process table set as a default
table. A large amount of data is generated for this table and may cause
performance issue if you have not planned to reserve enough space in
your Tivoli Data Warehouse database.

Also, for the ITM5 integration agents, all the tables of all the ITM5
agents are considered as default. This also may be more than what you
really need.

142 Tivoli Management Services Warehouse and Reporting

6. Click the Scheduling tab (Figure 3-26) and select the scheduling information:

a. Schedule the agent to run every x days.

b. Select the hour of the day that you want the summarization to run. The
default is to run every day at 2 a.m.

Figure 3-26 Scheduling the data collection and pruning on a Linux or AIX system

 Chapter 3. Warehousing in action 143

7. Click the Work Days tab (Figure 3-27 on page 145) and specify the shift
information and vacation settings:

a. Select day the week starts on.

b. If you want to specify shifts, select the Specify shifts check box. The
default settings for this field are listed in the Peak Shift Hours field on the
right side of the window. To change these settings, select the hours that
you want in the Off Peak Shift Hours field and click the right arrow button
to add them to the Peak Shift Hours field.

c. To change your vacation settings, select the Specify vacation days
check box. If you do not want to set your vacation days, clear this check
box.

d. Click Yes to count weekends as vacation days.

e. To add vacation days, click Add and select the vacation days that you
want to add from the calendar.

f. The days that you select are displayed in the field below the Count
weekends as vacation field. If you want to delete any days that you have
previously chosen, select them and click Delete.

Note: Changing the shift information after the data is summarized can
create an inconsistency in the data. Data that is collected and
summarized cannot be recalculated with the new shift values.

Note: On UNIX or Linux, right-click to select the month and year.

144 Tivoli Management Services Warehouse and Reporting

Figure 3-27 Defining shift periods and vacation settings

8. Click the Additional Parameters tab (Figure 3-28):

a. Specify the age of the hourly and daily data that you want summarized.
Values are 0 through n. The default is 1 for hourly data and 0 for daily
data.

b. Specify the maximum number of rows that can be deleted in a single
database transaction. The values are 1 through n. The default is 1000.

c. Choose the time zone that you want to use from the drop-down list. If the
Tivoli Data Warehouse and agents that are collecting data are all not in
the same time zone, and all the data is stored in the same database, use
this option to identify the time zone that you want to use.

 Chapter 3. Warehousing in action 145

Figure 3-28 Configuring additional parameters on a Linux or UNIX system

9. Click Save after you complete the configuration.

10.Start the Summarization and Pruning agent by performing one of the
following actions:

– To start from the Manage Tivoli Enterprise Services window, right-click the
Summarization and Pruning agent and select Start.

– To start the Summarization and Pruning agent from the command line,
enter the following command:

./itmcmd agent start sy

Where sy is the product code for the Summarization and Pruning agent.

To change the default data summarization, pruning configurations, or both after
you install the Summarization and Pruning agent, use the History Collection
Configuration window in the Tivoli Enterprise Portal. See the following section.

146 Tivoli Management Services Warehouse and Reporting

3.5 Configuring historical data collection

After you configure the Tivoli Warehouse Proxy, the agents have the necessary
infrastructure for historical data collection to occur. However, you have to enable
historical data collection for data to be written to the Tivoli Data Warehouse. This
section describes the process for configuring and starting historical data
collection for the Tivoli Monitoring agents. To configure historical data collection,
you have to log on to the Tivoli Enterprise Portal Server through either the
stand-alone Tivoli Enterprise Portal (TEP) client or TEP Web client.

You can open the historical collection options by clicking the icon from within the
TEP client, as shown in Figure 3-29. The historical collection window is
displayed.

Figure 3-29 TEP client historical collection icon

 Chapter 3. Warehousing in action 147

You can configure the agent attribute groups, as shown by the steps in
Figure 3-30.

Figure 3-30 History collection configuration

The steps presented in Figure 3-30 are as follows:

1. Select the history configuration icon from the Tivoli Enterprise Portal Server
graphical user interface (GUI).

2. Highlight the specific attribute groups that you want to collect historical data
for and add the configuration settings. If you select the Show Default Groups
button, the panel highlights all of the preconfigured attribute groups for the
current agent. This is useful if it is the first time that you are setting up an
agent for historical collection.

3. Select the Configure Groups button for the highlighted groups. If it is the first
time that you are configuring an attribute group and you have selected Show
Default Groups, all of the default settings that you defined in the
Summarization and Pruning agent configuration are loaded.

4. Highlight the specific groups again and select the Start button.

148 Tivoli Management Services Warehouse and Reporting

Figure 3-31 shows an example of how to configure the default attribute groups for
the Linux OS agent.

Figure 3-31 History configuration panel

The fields and buttons in Figure 3-31 include:

� Collection Interval (radio buttons)

The collection interval sets the default time to collect data on the Tivoli
Enterprise Monitoring Agent or Tivoli Enterprise Monitoring Server to the

Note: Note that if the warehouse interval is off, then you have to manage the
short-term binary files. Otherwise, they will grow indefinitely. You can also use
the krarloff utility to manage files.

 Chapter 3. Warehousing in action 149

binary files. The default 5-minute value might be a little low for all default
attribute groups. You can configure this for one group or a list of highlighted
groups.

� Collection Location (radio buttons)

This is the default location for storing the binary files. We recommend that
whenever possible you select Tivoli Enterprise Monitoring Agent (at the
agent).

� Warehouse Interval (radio buttons)

This is the interval at which the Tivoli Enterprise Monitoring Agent or Tivoli
Enterprise Monitoring Server binary data is uploaded to the Warehouse Proxy
agent. The options are 1 hour, daily, or off. For environments with a lot of
agents, we recommend that you select 1 hour. If the warehouse interval off
button is selected, no data is collected in the Tivoli Data Warehouse for the
selected attribute groups. However, if the attribute group is started with the
interval set to off, then the binary data will be collected on the agent; but, it will
never be pruned. For information about pruning the local binary data in this
special case, see IBM Tivoli Monitoring Administering Tivoli Monitoring
Guide, SC32-9408.

� Summarization

These settings specify which summarization tables are created in the Tivoli
Data Warehouse for the specific attribute groups.

� Pruning settings

Use these settings to specify how long to keep the data in the Tivoli Data
Warehouse. Data that is older than the prune settings is removed from the
Tivoli Data Warehouse.

� Configure Groups (button)

Click this to configure the highlighted attribute groups’ historical configuration
settings. You can highlight a single group or multiple groups.

� Unconfigure Groups (button)

Click this to unconfigure the highlighted attribute groups’ historical
configuration settings. You can highlight a single group or multiple groups.

� Show Default Groups (button)

This highlights all of the predefined (by the agent) attribute groups. Click this
to configure the highlighted attribute groups’ historical configuration settings.
You can highlight a single group or multiple groups.

� Start Collection (button)

Click this to start all of the highlighted attribute groups. You can highlight a
single group or multiple groups.

150 Tivoli Management Services Warehouse and Reporting

� Stop Collection (button)

Click this to stop all of the highlighted attribute groups. You can highlight a
single group or multiple groups. If one of the highlighted attribute groups is
already stopped, this button will be grayed out.

� Refresh Status (button)

Click this to refresh the status (Started or Stopped) of all the agents.

3.6 Tivoli Enterprise Console and Data Warehouse
integration

Tivoli Enterprise Console is a Tivoli enterprise event collection, correlation, and
management product. It consists of event collectors, a persistent store, a prolog
correlation engine, event consoles, and Tivoli Management Framework
automated tasking. Clients have often had problems with the lack of or difficulty
of self-monitoring, visualization, and optimization within the product. The
IBM Tivoli Monitoring for Tivoli Enterprise Console agent remedies many of
these limitations.

The Tivoli Enterprise Console Health Monitoring Agent obtains metric data by:

� Monitoring the Tivoli Enterprise Console processes

Monitoring the Tivoli Enterprise Console processes can provide information
such as the amount of system resources (memory, CPU) consumed, whether
or the processes are running, and so on.

� Querying the event repository

The RDBMS Interface Module (RIM) API is used to query the event
repository. This enables event distribution statistics to be gathered. This
provides a snapshot of the event data.

� Reading metric log files that are written by the Tivoli Enterprise Console
Server processes

Because the Tivoli Enterprise Console Health Monitoring Agent is a Tivoli
Monitoring V6.1 agent, it has the ability to archive and warehouse its data into
the Tivoli Data Warehouse like any other Tivoli Monitoring agent. This

Important: If you have selected the Apply settings to default tables for all
agents check box when you configured the Summarization and Pruning
agent, these historical and summarization settings will already be set for all
agents. When they are set, historical data collection is started the first time
that the Summarization and Pruning agent runs after configuration.

 Chapter 3. Warehousing in action 151

warehousing functionality exceeds that provided by the Tivoli Data Warehouse
V1.3 Tivoli Enterprise Console Warehouse Enablement Packs.

The agent provides three classes of data about the managed service (Tivoli
Enterprise Console):

� Availability: The availability of the Tivoli Enterprise Console Server processes

� Resource use: The resource use of the Tivoli Enterprise Console Server
processes

� Workload: The events workload on the Tivoli Enterprise Console Server

Only the Tivoli Enterprise Console Server components and the event repository
are monitored. The agent does not monitor:

� The stand-alone rule engine
� Tivoli Enterprise Console gateways, including state correlation
� Active Correlation Technology (ACT)

3.6.1 Prerequisites

The following software prerequisites are necessary for the agent to function
correctly:

� Tivoli Enterprise Console Fix Pack 5
� Tivoli Enterprise Console Interim Fix 3.9.0.5-TEC-00521

� Tivoli Monitoring V6.1 Fix Pack 3

The Tivoli Enterprise Console fixes mentioned previously provide two new Tivoli
Enterprise Console command-line interfaces (CLIs) among other things such as
adding new options to the .tec_config to enable data collection by Tivoli
Enterprise Console for the use of the monitoring agent.

� wesvragt

This is a new executable that ships with Tivoli Enterprise Console 3.9 Fix
Pack 5 and is installed with the existing Tivoli Enterprise Console CLI
commands. It is responsible for providing data for many of the health agent’s
attribute groups. When querying the Tivoli Enterprise Console database, the
wesvragt utility uses the RIM API to communicate with the Tivoli Enterprise
Console database.

� wagtinit

This command creates the database tables that are required for the wesvragt
application. This CLI has to be run only once as a post-installation step for the

1 This provides two new Tivoli Enterprise Console CLIs among other things such as adding new
options to the .tec_config to enable data collection by Tivoli Enterprise Console for the use of the
monitoring agent.

152 Tivoli Management Services Warehouse and Reporting

health monitoring agent. The wesvragt application can create the tables it
requires at run time, but this is not a preferred approach for most clients.
Creating a new CLI for creating the tables addresses the following concerns:

– Security

Many clients do not want the Tivoli Enterprise Console RIM user to have
create table privileges. Temporarily granting these privileges during
installation is more acceptable.

– Physical storage

If the wesvragt process creates tables dynamically, the tables can be
created in the default table space in the database. The wagtinit CLI
provides an option to specify the table space.

The following new configuration values are also added to the Tivoli Enterprise
Console Server configuration:

� tec_log_metrics

When this value is YES, the Tivoli Enterprise Console components that are
instrumented for the health monitoring gather metric data and write the logs to
the value specified in tec_log_metric_dir.

� tec_max_log_entries

This is the maximum number of entries (lines) that can be written to a single
log file. Each line uses a maximum of approximately 200 bytes.

� tec_rule_sample_period

The value (specified in seconds) is used to determine how often Tivoli
Enterprise Console writes the event type relevance metric data to a file. The
counters for the metric are reset when the data is written out. The minimum
value allowed is 120 seconds. If the value is less than 120 seconds but not 0,
it is set to 120 seconds. If the value is not set, the default value is
120 seconds. A value of 0 indicates that the rule engine metrics is not
gathered.

� tec_reception_sample_period

The value (specified in seconds) is used to determine how often Tivoli
Enterprise Console writes the event throughput metric data from Tivoli
Enterprise Console reception to a file. Counters maintained for a time interval
are reset when the data is written out.

Smaller values cause data to be written to disk more often and depending on
the event stream, can cause less memory to be consumed. A value of 0 turns
off the gathering of event throughput metric data.

Values are not likely to be written to the log file at the exact time interval
specified. To optimize performance, a timer is not maintained in the Tivoli

 Chapter 3. Warehousing in action 153

Enterprise Console reception code. The main logic of the Tivoli Enterprise
Console Reception component consists of a single while loop. Within the
loop, a lot of work is performed, including the reception of new events,
passing events to Tivoli Enterprise Console rule, and so on. At the bottom of
the loop, the code checks to see if the metrics are being gathered and
whether the tec_reception_sample_period time interval has elapsed. If a lot of
work is performed in the while loop, the actual time interval can be
significantly larger.

� tec_rule_sample_class_size

This value specifies the maximum number of different classes the metric
keeps track of. If the number of classes that we are keeping track of is greater
than the maximum number of classes allowed, we output the current metric
and reset the counters. The minimum value allowed is 200. A value of 0 or if
the keyword is not specified, this indicates that the rule engine metrics are not
gathered.

� tec_log_metric_dir

This is the directory where the metric log files are written and is by default
$DBDIR/tec_health.

3.6.2 Configuring Tivoli Enterprise Console

After the agent is installed on your Tivoli Enterprise Console Server, perform the
following steps to set up the Tivoli Enterprise Console product to support
monitoring.

1. On the Tivoli Enterprise Console event server, set up the TME by running the
setup_env.cmd (Windows) or setup_env.sh (Linux or UNIX) script.

2. On the Tivoli Enterprise Console event server, create the working tables that
the monitoring agent uses to store gathered metrics from the event
repository. Use this command:

wagtinit {-c|-r} [-t tablespace] [-p] [-d]

The parameters are as follows:

– -c: This parameter creates the tables and views for the agent. You must
specify either the -c or the -r parameter.

– -r: This parameter removes the tables and views for the agent. You must
specify either the -c or the -r parameter.

Important: To be able to run Tivoli Management Environment® (TME®)
tasks, the agent must be started by a user with sufficient TME privileges.

154 Tivoli Management Services Warehouse and Reporting

– -t tablespace: This parameter specifies the location for the working tables.
Replace tablespace with one of the following values:

• For a DB2 or Oracle database, the name of an existing tablespace
• For an IBM Informix® database, the name of an existing dbspace
• For an SQL Server database, the name of an existing file group
• For a Sybase database, the name of an existing segment

If you do not specify the -t parameter, the command uses the default
location for the user specified in the Tivoli Management Framework RIM
object.

– -p: This parameter creates the specified SQL statements without creating
or removing the tables and views. Use this option in combination with -c or
-r if you want to modify the generated SQL before creating or removing the
tables and views.

– -d: This parameter specifies that the wagtinit command must produce an
output of additional debugging messages.

The following command creates the required tables and views in the default
location:

wagtinit -c

3. Modify the Tivoli Enterprise Console event server configuration to enable
gathering of performance metrics. Configure the following parameters in the
$BINDIR/TME/TEC/.tec_config configuration file:

– tec_log_metrics=YES|NO

This enables or disables the gathering of performance metrics. Setting this
parameter to NO disables the gathering of all performance metrics.

– tec_rule_sample_class_size=size

This is the number of performance metrics counters to keep in memory;
one counter is used for each unique event class name encountered. The
minimum valid value for this parameter is 200 counters. Setting this
parameter to 0, or omitting it, disables the gathering of event activity
metrics.

Note: The wagtinit command creates tables and views using the user ID
defined in the RIM object. This user ID must have CREATE VIEW and
CREATE TABLE privileges for the command to function. The database
administrator can grant these privileges temporarily and revoke them after
the wagtinit command creates the tables and views.

 Chapter 3. Warehousing in action 155

– tec_rule_sample_period=seconds

This is the sample period (in seconds) to use when monitoring event
activity in the Tivoli Enterprise Console rule engine. Setting this parameter
to 0, or omitting it, disables the gathering of event activity metrics.

– tec_reception_sample_period=seconds

This is the sample period (in seconds) to use when gathering performance
metrics for Tivoli Enterprise Console event reception. Setting this
parameter to 0 disables the gathering of performance metrics for event
reception.

– tec_max_log_entries=lines

This the maximum number of lines to write to the log files used for
performance metrics. Each line uses a maximum of approximately
200 bytes of disk space. As many as two log files are created for each
metric attribute group. The minimum valid value for this parameter is
5000 lines (approximately 1 MB of disk space).

– tec_log_metrics_dir=path

This is the directory to use for storing the performance metrics log files.
This value must match the value entered in the agent configuration. On
Windows systems, ensure that the path does not include any spaces (for
example, specify C:\Progra~1\... instead of C:\Program Files\...).

4. On the Tivoli Enterprise Console event server, create the directory specified
by the tec_log_metrics_dir parameter in the .tec_config configuration file.
Make sure that the agent user account has sufficient privileges to read files in
this directory.

5. Restart the Tivoli Enterprise Console event server.

If you are using a Sybase or SQL Server database, you might also have to
modify your database configuration. Because the event distribution workspaces
use a significant amount of temporary workspace for queries, make sure that the
tempdb database has sufficient space allocated. The amount of space that is
required is proportional to the number of events in the event repository and is
increased if you enable the event source and host dimensions for the event
distribution data. The minimum recommended allocation for the tempdb
database is 100 MB.

Note: If you do not allocate sufficient space for the tempdb database, the
Tivoli Enterprise Console product might stop functioning. If this happens,
messages in the database log files indicate that there is insufficient temporary
space available.

156 Tivoli Management Services Warehouse and Reporting

3.6.3 Configuring the Tivoli Monitoring for Tivoli Enterprise
Console agent

Provide the following configuration values for the agent to operate. When you
configure an agent, a panel is displayed, which you can use to type in each
value. When there is a default value, this is pre-entered into the field. If a field
represents a password, two entry fields are displayed. You must enter the same
value in each field. The values that you type are not displayed. This helps to
maintain the security of these values.

The following fields are defined for this agent:

� Tab: Event Distribution

� Field: Include host dimension

� Type: Restricted; Flag to indicate whether to include the host dimension in the
event distribution data

In other words, this indicates whether to gather event distribution statistics by
the event host slot.

� Tab: Event Distribution

� Field: Include event source dimension

� Type: Restricted; Flag to indicate whether to include the event source
dimension in the event distribution data

In other words, this indicates whether to gather event distribution statistics by
the event source slot.

� Tab: Paths

� Field: Log directory

� Type: String

This is the directory that contains the Tivoli Enterprise Console metric log
files. Value must match tec_log_metrics_dir value in the .tec_config file. Use
a fully qualified path that does not include any environment variable
references. On Windows systems, ensure that the path does not include any
spaces or long file names.

Note: This setting is disabled by default. Enabling this option can
negatively affect the performance.

Note: This setting is disabled by default. Enabling this option can
negatively affect the performance.

 Chapter 3. Warehousing in action 157

� Tab: Event Distribution

� Field: String to represent null values

� Type: String

Value that represents a NULL or blank value; This string must be no more
than 64 characters in length. Events might not have a host or source value
set. The user can choose to not gather event distribution statistics by source
or by host. A value that represents a NULL or blank value has to be returned
with each attribute group. For example, N/A. The user must be able to specify
the value.

� Tab: Event Distribution

� Field: Refresh Interval

� Type: Numeric

The maximum time, in minutes, that the event distribution data might be
cached; A value of 0 indicates that the distribution is recalculated every time a
request is made for the data.

The configuration steps are detailed in the following sections.

Note: The default value for this field contains environment variable
references. Change it to a fully qualified path for certain workspaces to
function correctly.

Note: The 0 value setting is useful for attribute groups such as the event
distribution attribute groups, which might cache data in a database. A value
of 0 causes the agent to query the Tivoli Enterprise Console event
database and to populate working tables each time the data is requested.
A manual or automatic refresh from a Tivoli Enterprise Portal Server
console or a situation can trigger the agent to obtain data. This can
significantly reduce the performance of Tivoli Enterprise Console, because
table spaces scans are being performed. Locking problems can be
avoided by using uncommitted reads on platforms that support them
(DB2). Oracle never locks on reads, therefore locking is not an issue on
that platform.

158 Tivoli Management Services Warehouse and Reporting

For Windows systems
To configure Tivoli Monitoring agent for Tivoli Enterprise Console on a Windows
system, perform the following steps:

1. From your Windows desktop on your Tivoli Enterprise Console event server,
click Start → Programs → IBM Tivoli Monitoring → Manage Tivoli
Enterprise Monitoring Services.

2. Right-click Monitoring Agent for Tivoli Enterprise Console and click
Reconfigure, as shown in Figure 3-32.

Figure 3-32 Configuring monitoring agent for Tivoli Enterprise Console

 Chapter 3. Warehousing in action 159

3. The Advanced Configuration window opens as shown in Figure 3-33. Click
OK.

Figure 3-33 Configuring Tivoli agent for Tivoli Enterprise Console connection protocol

4. In the new window that opens, click OK.

160 Tivoli Management Services Warehouse and Reporting

5. In the Paths tab (Figure 3-34), enter the Tivoli Enterprise Console health log
directory, as described in 3.6.2, “Configuring Tivoli Enterprise Console” on
page 154.

Figure 3-34 Configuring Tivoli agent for Tivoli Enterprise Console: Health log path

6. In the Event Distribution tab (Figure 3-35), enter the required settings, as
described in 3.6.2, “Configuring Tivoli Enterprise Console” on page 154. After
you configure the settings as required, click OK.

Note: Enter the fully qualified path name in this field.

 Chapter 3. Warehousing in action 161

Figure 3-35 Configuring Tivoli agent for Tivoli Enterprise Console: Event distribution
settings

7. Restart the monitoring agent for Tivoli Enterprise Console by double-clicking
it. Alternatively, right-click and select Start.

For Linux or UNIX systems
To configure Tivoli Monitoring agent for Tivoli Enterprise Console on a Linux or
UNIX system, perform the following steps

1. To configure the Tivoli Monitoring agent for Tivoli Enterprise Console, you
have to log on to the server and issue the following command from the
%InstallDir%/IBM/ITM/bin directory:

./itmcmd config -A ka

The following line is displayed:

Agent configuration started...

2. The following questions enable you to configure the configuration options for
the agent. These are explained in more detail in 3.6.2, “Configuring Tivoli
Enterprise Console” on page 154. Example 3-1 shows the settings that are
requested.

162 Tivoli Management Services Warehouse and Reporting

Example 3-1 Settings questions

Edit 'Paths' settings? (default is: Yes):
Log Directory (default is: $DBDIR/tec_health):
Edit 'Event Distribution' settings? (default is: Yes):
Refresh Interval (default is: 15):
Include event source dimension
 Type number of item from the below list
 1. NO
 2. YES
 (default is: DIST_BY_SOURCE_FALSE):
Include host dimension
 Type number of item from the below list
 1. NO
 2. YES
 (default is: DIST_BY_HOST_FALSE):
String to represent null values (default is: N/A):

3. The agent asks to configure the connection information to the Tivoli
Enterprise Monitoring Server. Example 3-2 shows the configuration values.

Example 3-2 Configuration values

Will this agent connect to a TEMS? [YES or NO] (Default is: YES):
TEMS Host Name (Default is: belfast):

Network Protocol [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

 Now choose the next protocol from one of these:
 - ip
 - sna
 - ip.spipe
 - none
Network Protocol 2 (Default is: none):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):

Configure connection for a secondary TEMS? [YES or NO] (Default is:
NO):
Enter Optional Primary Network Name or "none" (Default is: none):

After you complete these steps, the following message is displayed:

Agent configuration completed...

The agent is now configured and ready to be started.

 Chapter 3. Warehousing in action 163

4. You can start the agent by issuing the following command from the
%InstallDir%/IBM/ITM/bin directory:

./itmcmd agent start ka

3.6.4 Collecting the Tivoli Enterprise Console agent historical data

As mentioned previously, the mechanism for collecting IBM Tivoli Monitoring
agent data is the same for all agents. Therefore, enabling the historical collection
for the Tivoli Enterprise Console agent involves configuring the historical
collection as detailed in 3.5, “Configuring historical data collection” on page 147.

In the product name field of the historical configuration window, select Tivoli
Enterprise Console Server Agent. Figure 3-36 shows the default groups for the
Tivoli Enterprise Console Server Agent.

Figure 3-36 Tivoli Enterprise Console Server Agent: Default historical groups

164 Tivoli Management Services Warehouse and Reporting

3.6.5 Tivoli Enterprise Console agent: Historical workspace
examples

IBM Tivoli Monitoring for Tivoli Enterprise Console provides the following
predefined workspaces, which are organized by navigator item:

� Tivoli Enterprise Console navigator item

– Tivoli Enterprise Console workspace

� Availability navigator item

– Availability workspace
– Tivoli Enterprise Console UI Server Process workspace

� Event Activity navigator item

– Event Activity workspace
– Event Activity By Class - Last 24hrs workspace
– Event Activity By Class - Last 1 Week workspace
– Event Activity By Class - Last 1 Month workspace
– Event Activity By Class - Last 1 Year workspace

� Event Distribution navigator item

– Event Distribution workspace
– Open Events Distribution workspace
– Acknowledged Events Distribution workspace
– Closed Events Distribution workspace

� Event Throughput navigator item

– Event Throughput” workspace
– Event Throughput - Last 24hrs workspace
– Event Throughput - Last 1 Week workspace
– Event Throughput - Last 1 Month workspace
– Event Throughput - Last 1 Year workspace

To obtain more detailed information about these workspaces, see IBM Tivoli
Monitoring for Tivoli Enterprise Console, GC32-1959. We provide some
examples of the Tivoli Monitoring for Tivoli Enterprise Console workspaces.

 Chapter 3. Warehousing in action 165

Figure 3-37 shows an example of the Event Activity By Class - Last 24hrs
workspace.

Figure 3-37 Event Activity By Class - Last 24hrs workspace example

166 Tivoli Management Services Warehouse and Reporting

Figure 3-38 shows an example of the Event Throughput - Last 24hrs workspace.

Figure 3-38 Event Throughput - Last 24hrs workspace example

3.7 Configuring IBM Tivoli Service Level Advisor and
Tivoli Data Warehouse integration

IBM Tivoli Service Level Advisor Version 2.1.1 augments the existing extract,
transform, and load (ETL) mechanism of pulling data from the Tivoli Data
Warehouse versions 1.2 and 1.3 with the addition of the data feed adapter and
data extractor architecture, which pulls data from the IBM Tivoli Monitoring V6.1
Data Warehouse. The Tivoli Enterprise Portal Server historical configuration
controls the rollup of this data into the data warehouse. Multiple monitoring
agents collect data and roll up the data into the data warehouse based on the
settings in the Tivoli Enterprise Portal Server historical configuration.

 Chapter 3. Warehousing in action 167

Figure 3-39 shows the Tivoli Service Level Advisor integration architecture.

Figure 3-39 Tivoli Service Level Advisor integration

The data feed adapter and the data extractor components extract and
summarize raw data points that are collected by IBM Tivoli Monitoring agents
and previously written to the Tivoli Data Warehouse component. When
summarized, the data feed adapter stores the data points into the IBM Tivoli
Service Level Advisor databases.

The data extractor component establishes a connection to the data warehouse to
collect and return a range of raw data point records as determined by the data
feed adapter. The data feed adapter is responsible for managing and
summarizing the raw data (returned from the data extractor) for a specific
monitoring agent. It continuously collects the data throughout the day based on
how you configure the poll interval. The data that is polled or summarized (this is
performed by IBM Tivoli Service Level Advisor, not by Summarization and
Pruning agent) is determined by the metadata for the corresponding IBM Tivoli
Monitoring agents that you registered during installation. After the data feed
adapter has completed polling and has stored the data in the data mart, the data
is evaluated and analyzed by IBM Tivoli Service Level Advisor against any
existing service level agreements (SLAs).

3.7.1 Configuration steps on all supported systems

To integrate IBM Tivoli Service Level Advisor and Tivoli Data Warehouse V2.1,
perform the following configuration steps:

1. Configure an IBM Tivoli Service Level Advisor data source in order for Tivoli
Service Level Advisor to be able to read the Tivoli Data Warehouse V2.1
historical data. The dsutil utility shows or updates data source information

V2.1

168 Tivoli Management Services Warehouse and Reporting

for the given data source. If you have IBM Tivoli Service Level Advisor
distributed on multiple systems, you must run dsutil on each system that has
a service level management (SLM) installation option (SLM Server, SLM
Administration Server, or SLM Reports). Use the following command to set
the Tivoli Data Warehouse data source:

dsutil tdw [url=<url>] [driver=<driver>] [userid=<userid>]
[password=<password>] [minconnections=<min_connections>]
[maxconnections=<max_connections>]

The parameters for this command are:

– url=<url>

This specifies the JDBC connection URL necessary to identify the
appropriate databases and drivers. See your specific database
management system documentation for the format of this URL.

– driver=<driver>

This specifies the JDBC driver used to establish a connection to the
database. See your specific database management system
documentation for the format of the driver string. For the DB2 application
driver, this value is set to COM.ibm.db2.jdbc.app.DB2Driver.

– userid=<userid>

This specifies the user name that is used to connect to the database.

– password=<password>

This specifies the password used to connect to the database.

– minconnections=<min_connections>

This specifies the minimum number of connections to hold in the database
connection pool. This value must be greater than zero and less than or
equal to the value specified in maxconnections. If this value is not set
properly, an error is returned and the parameter is not set.

– maxconnections=<max_connections>

This specifies the maximum number of connections to hold in the
database connection pool. This value must be greater than or equal to the
value specified in minconnections. This configuration parameter is
associated with the DB2 database level configuration parameter
maxappls.

The maxappls database configuration parameter specifies the maximum
number of concurrent applications that can be connected to a database. If
you increase the maxconnections value in dsutil, you might also have to
increase the value of maxappls. See IBM DB2 UDB Administration Guide:
Implementation V8.2, SC09-4820, for more information about database

 Chapter 3. Warehousing in action 169

configuration parameters. If this value is not set properly, an error is
returned and the parameter is not set.

Any combination of the database connection parameters can be changed to
create a new data source to replace an already existing data source. Values
entered must be valid values for the database that is accessed. If any values
are invalid, the data source creation returns errors during the restart of the
SLM Server, and the data source creation fails. After these database
parameters are altered, you must restart the SLM Server for the configuration
changes to take effect. For SLM Reports and the SLM Administration Server,
you must either restart the respective application (SLMReport or SLMAdmin)
using the administrative console, or restart the respective IBM WebSphere
Application Server for the configuration changes to take effect.

Example 3-3 shows the dsutil command usage in the lab environment.

Example 3-3 Example of dsutil command usage in the lab environment

dsutil tdw url=jdbc:db2://9.3.5.61:50000
driver=com.ibm.db2.jcc.DB2Driver userid=itmuser password=password

2. After you configure the data source, perform the registration of IBM Tivoli
Monitoring V6.1 agent’s metadata for use in Tivoli Service Level Advisor. To
do this, register a Tivoli Enterprise Portal (TEP) connection from within Tivoli
Service Level Advisor on the SLM Server. The scmd dfa setTepsConProps
command sets the connection properties required for communicating with the
Tivoli Enterprise Portal Server.

Note: The minconnections and maxconnections parameters are optional
and do not have to be included, because they are set to default values.
The default value for the minconnections parameter is 3, and the default
value for the maxconnections is 25.

Important: We found that unless the data source is configured correctly
and the SLM Server restarts without error, it is not possible to run any
further integration scmd dfa commands. See the IBM Tivoli Service Level
Advisor Administrator's Guide v2.1.1, SC32-0835, for troubleshooting and
debugging information.

170 Tivoli Management Services Warehouse and Reporting

The syntax of the command is as follows:

scmd [–p <current_password>] dfa setTepsConProps -hostname
<hostname> -port <port> -userID <userID> -password <password>

The parameters for this command are:

– –p <current_password>

This specifies the current password that is set in the configuration. This
option is required if password protection is enabled for the CLI service.

– –hostname <hostname>

This specifies the host name of the Tivoli Enterprise Portal Server.

– –port <port>

This specifies the port that is used to communicate with the Tivoli
Enterprise Portal Server.

– –userID <userID>

This specifies the user ID that is used to access the Tivoli Enterprise
Portal Server.

– –password <password>

This specifies the password for the user ID that accesses the Tivoli
Enterprise Portal Server.

Example 3-4 shows an example of the scmd dfa setTepsConProps command
usage.

Example 3-4 Example of scmd dfa setTepsConProps command usage

scmd dfa setTepsConProps -hostname 9.3.5.61 -port 1920 -userid sysadmin
-password password

Note: The Tivoli Service Level Advisor environment has to be sourced on
the SLM Server before you run any scmd commands. To do this:

1. From a command prompt where you installed your SLM Server,
navigate to the location where you installed IBM Tivoli Service Level
Advisor. For example, C:\TSLA.

2. Initialize the SLM environment by issuing the following command:

– For Windows systems: slmenv
– For UNIX systems: . ./slmenv

 Chapter 3. Warehousing in action 171

Restart the SLM database for the new properties to take effect. You can
check that the Tivoli Enterprise Portal Server connection is functioning
correctly by issuing the command:

scmd dfa listTEPSagents

If the connection is functioning correctly, you see an output similar to
Example 3-5.

Example 3-5 scmd dfa listTEPSagents command output

Agents registered on Tivoli Enterprise Portal Server: [9.3.5.61:1920]
1: ABA ITM 5.x: Domino
2: ABH ITM 5.x: mySAP
3: AMA ITM 5.x: Active Directory domain controller
4: AMB ITM 5.x: Active Directory replication
5: AMD ITM 5.x: DHCP
6: AMN ITM 5.x: DNS
7: AMS ITM 5.x: Solaris
8: AMW ITM 5.x: Windows
9: AMX ITM 5.x: UNIX - Linux
10: BIW ITM 5.x: MQ Workflow
11: BIX ITM 5.x: WebSphere InterChange Server
12: CTD ITM 5.x: DB2
13: CTO ITM 5.x: Oracle
14: CTQ ITM 5.x: WebSphere MQ
15: CTR ITM 5.x: IBM Informix
16: CTW ITM 5.x: Microsoft SQL Server
17: CTY ITM 5.x: Microsoft Exchange Server
18: GMS ITM 5.x: Siebel
19: GWA ITM 5.x: Apache
20: GWI ITM 5.x: Internet Information Server
21: GWL ITM 5.x: WebLogic
22: GWP ITM 5.x: IPlanet
23: IQS ITM 5.x: Microsoft Commerce Server

Note: Restart the SLM Server for the new properties to take effect. You
can check the properties that are defined by using the following command:

scmd dfa getTepsConProps

You see an output similar to:

Hostname: 9.3.5.61
Port: 1920
UserID: sysadmin

172 Tivoli Management Services Warehouse and Reporting

24: IQY ITM 5.x: Microsoft Internet Security and Acceleration
Server
25: IQZ ITM 5.x: Microsoft BizTalk Server
26: IUD ITM 5.x: Microsoft UDDI Services
27: IUI ITM 5.x: Microsoft Host Integration Server
28: IVD ITM 5.x: Microsoft Internet Security and Acceleration
Server 200
4
29: IVI ITM 5.x: VMware ESX
30: IXA ITM 5.x: Microsoft SharePoint Portal Server
31: IXB ITM 5.x: Sybase ASE
32: IXT ITM 5.x: Citrix MetaFrame Access Suite
33: IYM ITM 5.x: Microsoft Content Management Server
34: IZY ITM 5.x: WebSphere Application Server
35: KA4 i5/OS
36: KIB CCC Logs
37: KKA Tivoli Enterprise Console Server Agent
38: KLZ Linux
39: KNT Windows OS
40: KOQ Microsoft SQL Server
41: KOR Oracle
42: KOY Sybase Server
43: KT2 ITCAM Response Time Tracking
44: KTM ITM 5.x: Health
45: KUD00 DB2
46: KUX UNIX OS
47: MMI ITM 5.x: WebSphere MQ Integrator
48: MYS00 MYSQL
49: UAG00 UAGENT

3. Register the IBM Tivoli Monitoring V6.1 agent’s metadata for use in IBM Tivoli
Service Level Advisor. The scmd dfa register command registers
information about monitoring data that can be used by the IBM Tivoli Service
Level Advisor in offerings. The registration information links this data to its
originator (for example, an IBM Tivoli Monitoring agent) and identifies where

Note: The following products are trademarked:
� IBM Domino®
� mySAP™
� Active Directory®
� Siebel®
� BizTalk®
� SharePoint®
� IBM i5/OS®

 Chapter 3. Warehousing in action 173

the data can be found for extraction by the data feed adapter. Any mapping
information that is required to transform the data from its format in its source
location to the data format used by IBM Tivoli Service Level Advisor within its
SLM databases is supplied during the registration process.

In this release, the main utilization of the scmd dfa register command is to
register data that is found in the IBM Tivoli Monitoring 6.1.0 data warehouse
database that is supplied by the IBM Tivoli Monitoring agents. The IBM Tivoli
Monitoring 6.1.0 Group Name tables are mapped to the new IBM Tivoli
Service Level Advisor component types. The registration process maps the
columns in the IBM Tivoli Monitoring 6.1.0 Group Name tables to identify the
component names, metrics, and attribute type data objects. The scmd dfa
register obtains its information either directly from a connected Tivoli
Enterprise Portal Server or from an agent registration file that is in the
Extensible Markup Language (XML) format.

Agents can provide an abundance of monitoring data and only a subset is
suitable for meaningful service level agreements. The register command
enables the user to selectively choose a subset of component types and
metrics that IBM Tivoli Service Level Advisor recognizes from the total set
that the agent might provide. IBM Tivoli Service Level Advisor contains
several best practice files that are tailored for commonly used agents that
indicate a subset of component types and metrics that are best suited for use
in service level agreements.

Use these best practices when you obtain registration information from the
Tivoli Enterprise Portal Server to register only the recommended data. If you
have to selectively tailor the metrics or attribute types registered for a
particular agent, use the XML formatted agent registration file, which provides
detailed control over what is registered. Create the agent registration file by
saving the data obtained directly from the Tivoli Enterprise Portal Server. This
is covered in more detail in IBM Tivoli Service Level Advisor Command
Reference v2.1.1, SC32-0833, and IBM Tivoli Service Level Advisor
Administrator's Guide v2.1.1, SC32-0835.

You can run the scmd dfa register command multiple times to add more
component types, attributes, or metrics to pre-existing agent registration data.
Use the scmd dfa unregister command to unregister agents. It is possible to
automatically register agent metadata during your installation of IBM Tivoli
Service Level Advisor. Select the Register best practices check box during
your installation and it registers the metadata for the component types and
metrics that Tivoli Service Level Advisor recommends for the monitoring
agents that you have installed in your Tivoli Enterprise Portal Server.

174 Tivoli Management Services Warehouse and Reporting

The usage of the scmd dfa register command is:

scmd [.p <current_password>] dfa register -file
<agent-registration-filename> { -compType {<component type code> ...
| ALL} | -list | -validateOnly }

Alternatively:

scmd [.p <current_password>] dfa register -teps{ <ITM Agent code> |
ALL} { -allmetrics | -bestpractices {<best practice category> ... |
ALL} } { -compType {<component type code> ... | ALL} | -save <save
filename> | -list | -validateOnly }

Where <best practice category> choices are:

– Availability
– Performance
– Utilization

There are two mutually exclusive options, -teps and -file, which determine
the other options that you can use.

The parameters for this command are:

– -teps<ITM Agent code>|ALL }

This option requires an active connection to the Tivoli Enterprise Portal
Server and obtains registration information from the Tivoli Enterprise
Portal Server for either a single IBM Tivoli Monitoring, version 6.1.0 agent
or for all agents that are currently installed for the Tivoli Enterprise Portal
Server. Again, you can use the scmd dfa listTEPSagents command to
determine what agents are available for registration. When the registration
information is obtained and if the –save, -list, or –validateOnly options
are not specified, the new component types, attribute types, and metrics
are registered and become available for use in offerings. This option is
mutually exclusive with the -file option.

– –p <current_password>

This specifies the current password that is set in the configuration. This
option is required if password protection is enabled for the CLI service.

– -file<agent-registration-filename>

This reads an agent registration file from the $SLMBASEDIR/agentdefs/
subdirectory to obtain registration information for a single IBM Tivoli
Monitoring, version 6.1.0 agent. Specify the file name with the –file
option, and you must not include the.xml extension. For example, -file
docknt option reads the $SLMBASEDIR/agentdefs/docknt.xml file. Create
the agent registration file initially in a prior running of the scmd dfa
register command with the –teps and –save options. After you save and
edit the agent registration file, it can be used to register the specified

 Chapter 3. Warehousing in action 175

component types, attribute types, and metrics with the –file option. This
option is mutually exclusive with the -teps option.

– -compType<acomponent type code...>|ALL }

This option enables you to select all or a subset of available components
types that are listed in the registration information, which is obtained from
the Tivoli Enterprise Portal Server or from the agent registration file. If you
specify the –bestPractice option, the available component list is narrowed
down by that option’s arguments before the arguments take affect. Run
the -list option in a different invocation of the scmd dfa register
command to get the names and codes of the component types that are
available for your selection. You must use the –compType option when you
register agents to specify either that all available component types and
their metrics must be registered (indicated by the ALL keyword) or just the
subset of component types (indicated in the argument list). This option is
mutually exclusive with the -save, -list, and -validateOnly options, but
is supported with either the –teps or –file options.

– -list

This displays the codes and names of the component types that can be
registered based on the registration information obtained from the Tivoli
Enterprise Portal server or from the agent registration file, and the impact
of the –bestPractice arguments if you specified that option. This option is
mutually exclusive with the –componentType, -save, and -validateOnly
options, but is supported with either the –teps or –file options.

– -validateOnly

This does not register any component types or metrics within IBM Tivoli
Service Level Advisor, but validates the contents of the agent registration
XML that is supplied by the -file option or internally generated by the
-teps option. Although this option is supported with either the –teps or
–file options, it is most useful with the –file option, because it validates
the file that you created or edited. If you specify the –bestPractice option,
the available component list is narrowed down by that option’s arguments
and validation occurs only on those component types. This option is
mutually exclusive with the -save, -list, and -compType options.

– -save <agent-registration-filename>

You can use this option only with the -teps option and does not register
any component types or metrics within IBM Tivoli Service Level Advisor,
but saves the agent registration information that is obtained from the Tivoli
Enterprise Portal Server as an XML file in the $SLMBASEDIR/agentdefs
subdirectory. For example, -save my-agent-reg-file creates or
overwrites the $SLMBASEDIR/agentdefs/my-agent-reg-file.xml file. The
file name specified with the -save option does not include the.xml

176 Tivoli Management Services Warehouse and Reporting

extension. After you save the agent registration XML file, you can edit and
register it at a later time using the scmd dfa -file
<agent-registration-filename> command. This option is mutually
exclusive with the -compType, -list, and -validateOnly options.

– -allmetrics

You can use this option only used with the –teps option and registers all
metrics that are defined for the component types specified in the
–compType option. Within the registration information obtained from the
Tivoli Enterprise Portal Server, availability metrics are not as clearly
defined as performance and utilization metrics. For certain agents, IBM
Tivoli Service Level Advisor has defined availability metrics in best
practice files that are based on the monitoring data attributes supplied by
the IBM Tivoli Monitoring 6.1.0 agents. These definitions are placed in
availability best practices files.

This option examines any availability best practices files that are defined
for the agents specified through the –teps option and also registers those
availability metrics. Before you use the –all metrics option, be aware that
this might unnecessarily degrade the overall IBM Tivoli Service Level
Advisor performance, because the data feed adapter extracts,
summarizes, and stores the metric data for all metrics that are specified
whether they are used in SLAs. In addition, all metrics that are registered
for component types are displayed to the SLM specialist when creating
offerings. A cluttered list of unused metrics might become a problem for
some users. These two negative impacts are intensified if you choose to
use the –teps ALL with the –allMetrics and - compType ALL options, which
registers the maximum data possible. This option is mutually exclusive
with the -bestpractice option.

– -bestpractice {<best practice category>...|ALL}

This selects the predefined categories of best practice component types
and metrics for registration in IBM Tivoli Service Level Advisor. Some
IBM Tivoli Monitoring 6.1.0 agents provide many component types and
metrics that are not relevant for creating SLAs. For some agents, IBM
Tivoli Service Level Advisor has selected a subset of component types
and associated metrics that it recommends for inclusion in SLAs and
places these recommendations in the best practices XML files. IBM Tivoli
Service Level Advisor classifies metrics under the following resource
characteristic categories:

• Availability
• Utilization
• Performance

For each agent that has pertinent component types and metrics, a best
practices file is provided for each category. By using this option and listing

 Chapter 3. Warehousing in action 177

the desired categories, you can specify that one or more best practice files
to be used to filter the total set of component types and metrics obtained
from the Tivoli Enterprise Portal Server for the agent or agents that you
specified in the –teps option. By using the ALL keyword, you can specify
that all existing best practice files be used. Best practices files are located
in the $SLMBASEDIR/agentdefs/bestpractices subdirectory with the
following file name notation: doc<agent code>-bp-< best practice
category>.xml For example, the KNT agent has these associated best
practices files:

• docknt-bp-availabilty.xml
• docknt-bp-performance.xml
• docknt-bp-utilization.xml

This option is mutually exclusive with the -allmetrics option.

In our lab environment and for the purpose of simplicity, we imported the best
practice agent metadata from the Tivoli Enterprise Portal Server. Example 3-6
shows the syntax that we used and the output obtained from the command.

Example 3-6 scmd register command used in the lab environment

C:\PROGRA~1\TSLA\cfg\default\com\tivoli\managed\spi\toronto\ds>scmd dfa
register
 -teps ALL -bestpractices ALL

These agents on the Tivoli Enterprise Portal Server have no best
practice files
and will not be processed for registration:
1: ABA ITM 5.x: Domino
2: ABH ITM 5.x: mySAP
3: AMA ITM 5.x: Active Directory domain controller
4: AMB ITM 5.x: Active Directory replication
5: AMD ITM 5.x: DHCP
6: AMN ITM 5.x: DNS
7: AMS ITM 5.x: Solaris
8: AMW ITM 5.x: Windows
9: AMX ITM 5.x: UNIX - Linux
10: BIW ITM 5.x: MQ Workflow
11: BIX ITM 5.x: WebSphere InterChange Server
12: CTD ITM 5.x: DB2
13: CTO ITM 5.x: Oracle
14: CTQ ITM 5.x: WebSphere MQ
15: CTR ITM 5.x: IBM Informix
16: CTW ITM 5.x: Microsoft SQL Server
17: CTY ITM 5.x: Microsoft Exchange Server
18: GMS ITM 5.x: Siebel

178 Tivoli Management Services Warehouse and Reporting

19: GWA ITM 5.x: Apache
20: GWI ITM 5.x: Internet Information Server
21: GWL ITM 5.x: WebLogic
22: GWP ITM 5.x: IPlanet
23: IQS ITM 5.x: Microsoft Commerce Server
24: IQY ITM 5.x: Microsoft Internet Security and Acceleration
Server
25: IQZ ITM 5.x: Microsoft BizTalk Server
26: IUD ITM 5.x: Microsoft UDDI Services
27: IUI ITM 5.x: Microsoft Host Integration Server
28: IVD ITM 5.x: Microsoft Internet Security and Acceleration
Server 200
4
29: IVI ITM 5.x: VMware ESX
30: IXA ITM 5.x: Microsoft SharePoint Portal Server
31: IXB ITM 5.x: Sybase ASE
32: IXT ITM 5.x: Citrix MetaFrame Access Suite
33: IYM ITM 5.x: Microsoft Content Management Server
34: IZY ITM 5.x: WebSphere Application Server
35: KIB CCC Logs
36: KKA Tivoli Enterprise Console Server Agent
37: KT2 ITCAM Response Time Tracking
38: KTM ITM 5.x: Health
39: MMI ITM 5.x: WebSphere MQ Integrator
40: MYS00 MYSQL
41: UAG00 UAGENT
Starting to process Tivoli Enterprise Portal Server agent: [kud00 :
DB2]
[kud00 : DB2] Applying best practices file ->
dockud00-bp-performance.xml
[kud00 : DB2] Applying best practices file ->
dockud00-bp-availability.xml
[kud00 : DB2] Applying best practices file ->
dockud00-bp-utilization.xml
Processing Component Type code: KUD2649900
 name: KUDDB2APPLGROUP00_U
Processing Component Type code: KUD3437500
 name: KUDDBASEGROUP00
Processing Component Type code: KUD3437600
 name: KUDDBASEGROUP01
Processing Component Type code: KUD4177600
 name: KUDBUFFERPOOL00
Processing Component Type code: KUD4238000
 name: KUDINFO00
Processing Component Type code: KUD5214100

 Chapter 3. Warehousing in action 179

 name: KUDLOCKCONFLICT00
Processing Component Type code: KUDTABSPC
 name: KUDTABSPACE
Starting to process Tivoli Enterprise Portal Server agent: [ka4 :
i5/OS]
[ka4 : i5/OS] Applying best practices file -> docka4-bp-performance.xml
[ka4 : i5/OS] Applying best practices file -> docka4-bp-utilization.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: i5/OS

Processing Component Type code: KA4ACCTJ
 name: OS400_Acct_Jrn
Processing Component Type code: KA4ASYNC
 name: OS400_Comm_Async
Processing Component Type code: KA4BSYNC
 name: OS400_Comm_Bisync
Starting to process Tivoli Enterprise Portal Server agent: [kor :
Oracle]
[kor : Oracle] Applying best practices file ->
dockor-bp-performance.xml
[kor : Oracle] Applying best practices file ->
dockor-bp-availability.xml
[kor : Oracle] Applying best practices file ->
dockor-bp-utilization.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: Oracle

Processing Component Type code: KORDB
 name: Oracle_Database
Processing Component Type code: KORDISPD
 name: Oracle_Dispatcher_Detail
Processing Component Type code: KORFILES
 name: Oracle_Files
Processing Component Type code: KORLISTD
 name: Oracle_Listener_Detail
Processing Component Type code: KORLOCKS
 name: Oracle_Contention_Summary
Processing Component Type code: KORPROCD
 name: Oracle_Process_Detail
Processing Component Type code: KORPROCS
 name: Oracle_Process_Summary
Processing Component Type code: KORRBST
 name: Oracle_Rollback_Segments

180 Tivoli Management Services Warehouse and Reporting

Processing Component Type code: KORSESSD
 name: Oracle_Session_Detail
Processing Component Type code: KORSGA
 name: Oracle_SGA_Memory
Processing Component Type code: KORSRVR
 name: Oracle_Server
Processing Component Type code: KORSTATS
 name: Oracle_Statistics_Summary
Processing Component Type code: KORTS
 name: Oracle_Tablespaces
Starting to process Tivoli Enterprise Portal Server agent: [koq :
Microsoft SQL
Server]
[koq : Microsoft SQL Server] Applying best practices file ->
dockoq-bp-performan
ce.xml
[koq : Microsoft SQL Server] Applying best practices file ->
dockoq-bp-availabil
ity.xml
[koq : Microsoft SQL Server] Applying best practices file ->
dockoq-bp-utilizati
on.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: Microso
ft SQL Server

Processing Component Type code: KOQDBD
 name: MS_SQL_Database_Detail
Processing Component Type code: KOQDBS
 name: MS_SQL_Database_Summary
Processing Component Type code: KOQDEVD
 name: MS_SQL_Device_Detail
Processing Component Type code: KOQPRCD
 name: MS_SQL_Process_Detail
Processing Component Type code: KOQPRCS
 name: MS_SQL_Process_Summary
Processing Component Type code: KOQPROBS
 name: MS_SQL_Problem_Summary
Processing Component Type code: KOQSRVD
 name: MS_SQL_Server_Detail
Processing Component Type code: KOQSRVS
 name: MS_SQL_Server_Summary
Processing Component Type code: KOQSTATS
 name: MS_SQL_Statistics_Summary

 Chapter 3. Warehousing in action 181

Processing Component Type code: KOQTBLD
 name: MS_SQL_Table_Detail
Starting to process Tivoli Enterprise Portal Server agent: [klz :
Linux]
[klz : Linux] Applying best practices file -> docklz-bp-performance.xml
[klz : Linux] Applying best practices file ->
docklz-bp-availability.xml
[klz : Linux] Applying best practices file -> docklz-bp-utilization.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: Linux

Processing Component Type code: LNXCPU
 name: Linux_CPU
Processing Component Type code: LNXCPUAVG
 name: Linux_CPU_Averages
Processing Component Type code: LNXDISK
 name: Linux_Disk
Processing Component Type code: LNXDSKIO
 name: Linux_Disk_IO
Processing Component Type code: LNXDU
 name: Linux_Disk_Usage_Trends
Processing Component Type code: LNXNET
 name: Linux_Network
Processing Component Type code: LNXNFS
 name: Linux_NFS_Statistics
Processing Component Type code: LNXPROC
 name: Linux_Process
Processing Component Type code: LNXRPC
 name: Linux_RPC_Statistics
Processing Component Type code: LNXSOCKD
 name: Linux_Sockets_Detail
Processing Component Type code: LNXSOCKS
 name: Linux_Sockets_Status
Processing Component Type code: LNXSYS
 name: Linux_System_Statistics
Processing Component Type code: LNXVM
 name: Linux_VM_Stats
Starting to process Tivoli Enterprise Portal Server agent: [kux : UNIX
OS]
[kux : UNIX OS] Applying best practices file ->
dockux-bp-performance.xml
[kux : UNIX OS] Applying best practices file ->
dockux-bp-availability.xml

182 Tivoli Management Services Warehouse and Reporting

[kux : UNIX OS] Applying best practices file ->
dockux-bp-utilization.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: UNIX OS

Processing Component Type code: UNIXCPU
 name: SMP_CPU
Processing Component Type code: UNIXDISK
 name: Disk
Processing Component Type code: UNIXDPERF
 name: Disk_Performance
Processing Component Type code: UNIXNET
 name: Network
Processing Component Type code: UNIXNFS
 name: N_F_S_and_R_P_C_Statistics
Processing Component Type code: UNIXOS
 name: System
Processing Component Type code: UNIXPS
 name: Process
Processing Component Type code: UNIXUSER
 name: User
Starting to process Tivoli Enterprise Portal Server agent: [knt :
Windows OS]
[knt : Windows OS] Applying best practices file ->
docknt-bp-performance.xml
[knt : Windows OS] Applying best practices file ->
docknt-bp-availability.xml
[knt : Windows OS] Applying best practices file ->
docknt-bp-utilization.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: Windows
 OS

Processing Component Type code: DHCPSRV
 name: DHCP_Server
Processing Component Type code: DNSQUERY
 name: DNS_Query
Processing Component Type code: DNSWINS
 name: DNS_WINS
Processing Component Type code: ICMPSTAT
 name: ICMP_Statistics

 Chapter 3. Warehousing in action 183

Processing Component Type code: IPSTATS
 name: IP_Statistics
Processing Component Type code: KNTRASTOT
 name: RAS_Total
Processing Component Type code: NETSEGMT
 name: Network_Segment
Processing Component Type code: NETWRKIN
 name: Network_Interface
Processing Component Type code: NTDEVICE
 name: NT_Devices
Processing Component Type code: NTPAGEFILE
 name: NT_Paging_File
Processing Component Type code: NTPRINTER
 name: NT_Printer
Processing Component Type code: NTPROCSSR
 name: NT_Processor
Processing Component Type code: NTSERVICE
 name: NT_Services
Processing Component Type code: PRINTQ
 name: Print_Queue
Processing Component Type code: TCPSTATS
 name: TCP_Statistics
Processing Component Type code: UDPSTATS
 name: UDP_Statistics
Processing Component Type code: WTLOGCLDSK
 name: NT_Logical_Disk
Processing Component Type code: WTMEMORY
 name: NT_Memory
Processing Component Type code: WTPHYSDSK
 name: NT_Physical_Disk
Processing Component Type code: WTPROCESS
 name: NT_Process
Processing Component Type code: WTSERVER
 name: NT_Server
Processing Component Type code: WTSERVERQ
 name: NT_Server_Work_Queues
Processing Component Type code: WTSYSTEM
 name: NT_System
Starting to process Tivoli Enterprise Portal Server agent: [koy :
Sybase Server]

[koy : Sybase Server] Applying best practices file ->
dockoy-bp-performance.xml
[koy : Sybase Server] Applying best practices file ->
dockoy-bp-availability.xml

184 Tivoli Management Services Warehouse and Reporting

[koy : Sybase Server] Applying best practices file ->
dockoy-bp-utilization.xml

Proceeding to register this agent with IBM Tivoli Service Level
Advisor: Sybase
Server

Processing Component Type code: KOYDBD
 name: Sybase_Database_Detail
Processing Component Type code: KOYDBS
 name: Sybase_Database_Summary
Processing Component Type code: KOYDEVD
 name: Sybase_Device_Detail
Processing Component Type code: KOYENGD
 name: Sybase_Engine_Detail
Processing Component Type code: KOYENGS
 name: Sybase_Engine_Summary
Processing Component Type code: KOYLCKD
 name: Sybase_Lock_Detail
Processing Component Type code: KOYPRCD
 name: Sybase_Process_Detail
Processing Component Type code: KOYPRCS
 name: Sybase_Process_Summary
Processing Component Type code: KOYSDEVD
 name: Sybase_Physical_Device_Detail
Processing Component Type code: KOYSQLD
 name: Sybase_SQL_Detail
Processing Component Type code: KOYSRVD
 name: Sybase_Server_Detail
Processing Component Type code: KOYSRVS
 name: Sybase_Server_Summary
Processing Component Type code: KOYSTATS
 name: Sybase_Statistics_Summary

Processing has completed.

C:\PROGRA~1\TSLA\cfg\default\com\tivoli\managed\spi\toronto\ds>

 Chapter 3. Warehousing in action 185

3.7.2 Examples of IBM Tivoli Service Level Advisor reports using
Tivoli Data Warehouse data

This section shows some examples of how IBM Tivoli Service Level Advisor uses
the warehouse historical data.

Important: You must schedule your data feed adapter poll frequency
carefully, because a low interval value might result in unnecessary CPU
processing overhead. In the Tivoli Enterprise Portal Server environment, a
product group is configured to have its data uploaded (through an agent) into
the Tivoli Data Warehouse database on an hourly basis or daily basis.
Although several product groups might be configured for the same setting (for
example, hourly), their corresponding agents might not be delivering the data
at the same time each hour.

For example, one product group might deliver data 5 minutes into the hour,
and another product group might deliver data 20 minutes. It might seem
logical to change the default data feed adapter poll setting of 30 minutes to
summarize frequently to gather the latest update poll as soon as possible.
However, each time a poll is issued, all components types are queried and the
latest data points that were not summarized are retrieved to determine if the
data has reached a time where it can be finally summarized. For the majority
of these polls, no summarization takes place and the processing overhead to
reach that decision is wasted. By spacing out the polls to a larger value (the
default value of 30 minutes), your polls yield more actual data summarization
without delaying evaluation results.

If your environment has all the product groups configured for a daily setting,
setting the data feed adapter poll even higher than the default value (every
four hours) serves a similar purpose. For more information about the data feed
adapter and data extractor, see Getting Started with IBM Tivoli Service Level
Advisor v2.1, SC32-0834.

186 Tivoli Management Services Warehouse and Reporting

Figure 3-40 shows an example SLA reports (SLO results).

Figure 3-40 Example SLA report (SLO results)

Figure 3-41 shows an example SLA report (SLO chart).

Figure 3-41 Example SLA report (SLO chart)

 Chapter 3. Warehousing in action 187

3.8 IBM Tivoli Composite Application Manager for
Response Time Tracking and Tivoli Data Warehouse
integration

IBM Tivoli Composite Application Manager for Response Time Tracking can be
integrated into the IBM Tivoli Monitoring V6.1 infrastructure, enabling you to
exploit fully IBM Tivoli Monitoring V6.1 functionality such as Tivoli Data
Warehouse V2.1, correlate response time information with data from other
IBM Tivoli Monitoring V6.1 agents, and have this information presented in Tivoli
Enterprise Portal.

The integration into IBM Tivoli Monitoring V6.1 infrastructure uses the IBM Tivoli
Composite Application Manager for Response Time Tracking monitoring agent.
The task of the Tivoli Enterprise Monitoring Agent is to retrieve information from
IBM Tivoli Composite Application Manager for Response Time Tracking
management server and to forward the response time information to Tivoli
Enterprise Monitoring Server.

Tivoli Enterprise Monitoring Agent is shipped as part of IBM Tivoli Composite
Application Manager for Response Time Tracking. It connects to the IBM Tivoli
Composite Application Manager for Response Time Tracking management
server and collects information at customizable intervals. This enables you to
install it on any machine with a TCP/IP connection to the IBM Tivoli Composite
Application Manager for Response Time Tracking management server. It is
much easier to have the management server itself host the Tivoli Enterprise
Monitoring Agent as the Tivoli Enterprise Monitoring Agent host name is shown
in Tivoli Enterprise Portal as the source of the monitor.

188 Tivoli Management Services Warehouse and Reporting

Figure 3-42 shows the agent conceptual architecture.

Figure 3-42 IBM Tivoli Composite Application Manager for Response Time Tracking and Tivoli Monitoring V6.1

3.8.1 IBM Tivoli Composite Application Manager for Response Time
Tracking agent configuration

You must provide the following configuration values for the agent to operate.
When configuring an agent, a panel is displayed. Use this panel to type in each
value. When there is a default value, this will be pre-entered into the field. If a
field represents a password, two entry fields are displayed. You must enter the
same value in each field. The values that you type are not displayed. This helps
to maintain the security of these values. All mandatory values for the
configuration are shown in bold.

Define the following fields for this agent:

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Response Time Tracking Management Server Host

� Explanation: Use this field to define the IBM Tivoli Composite Application
Manager for Response Time Tracking management server host name.

 Chapter 3. Warehousing in action 189

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Response Time Tracking Management Server Port

� Explanation: Use this field to define the port the IBM Tivoli Composite
Application Manager for Response Time Tracking management server is
using for communication. This is defined in the RTT server.properties file on
your RTT Management Server

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Response Time Tracking User Login ID

� Explanation: Use this field to define a valid IBM Tivoli Composite Application
Manager for Response Time Tracking user that the agent can use to log on to
the Response Time Tracking management server.

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Response Time Tracking Management Login Password

� Explanation: Use this field to define the password for the user login defined in
the Response Time Tracking User Login ID field.

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Is Response Time Tracking Management Server SSL Enabled?

� Explanation: Use this field to define whether your IBM Tivoli Composite
Application Manager for Response Time Tracking server is enabled for
Secure Sockets Layer (SSL) communication.

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Response Time Tracking Keystore File

� Explanation: This slot is only required if your IBM Tivoli Composite
Application Manager for Response Time Tracking server is SSL enabled. It is
used to define the keystore file that is used in SSL communications.

� Tab: ITCAM for Response Time Tracking Management Server Identity

� Field: Response Time Tracking Keystore Password

� Explanation: This slot is only required if your IBM Tivoli Composite
Application Manager for Response Time Tracking server is SSL enabled. It is
used to define the keystore file password that is used in SSL
communications.

190 Tivoli Management Services Warehouse and Reporting

� Tab: Response Time Tracking Agent Configuration Options

� Field: Maximum Timespan for Instance Selection in hours

� Explanation: Use this field to define the maximum amount of instance
reporting data that is displayed in the IBM Tivoli Composite Application
Manager for Response Time Tracking agent TEP workspace.

� Tab: Response Time Tracking Agent Configuration Options

� Field: Maximum number of log messages

� Explanation: Use this field to define the maximum number of log messages
from the IBM Tivoli Composite Application Manager for Response Time
Tracking management server log that are displayed in the IBM Tivoli
Composite Application Manager for Response Time Tracking agent TEP
workspace.

� Tab: Response Time Tracking Agent Configuration Options

� Field: Agent Message expiration

� Explanation: Use this field to define the expiration time for the agent message
data that is displayed in the IBM Tivoli Composite Application Manager for
Response Time Tracking agent TEP workspace.

� Tab: Response Time Tracking Managing Server Database Configuration
Options

� Field: Select the Database type for Managing Server Database

� Explanation: Use this field to define the database type used for the IBM Tivoli
Composite Application Manager for Response Time Tracking management
server database.

� Tab: Response Time Tracking Managing Server Database Configuration
Options

� Field: Fully qualified hostname of the Managing Server Database Machine

� Explanation: Use this field to define the host name of the server where the
IBM Tivoli Composite Application Manager for Response Time Tracking
management server database resides.

� Tab: Response Time Tracking Managing Server Database Configuration
Options

� Field: Specify Database Port: default for DB2 is 50000 and for Oracle is 1521

� Explanation: Use this field to define the port that is used to communicate with
the IBM Tivoli Composite Application Manager for Response Time Tracking
management server database.

 Chapter 3. Warehousing in action 191

� Tab: Response Time Tracking Managing Server Database Configuration
Options

� Field: RTT MS Schema User Login Name

� Explanation: Use this field to define the database user that can be used by
the agent to connect to the IBM Tivoli Composite Application Manager for
Response Time Tracking management server database.

� Tab: Response Time Tracking Managing Server Database Configuration
Options

� Field: RTT MS Schema User Login Password

� Explanation: Use this field to define the user password for the database user
specified in the “RTT MS Schema User Login Name” field described
previously.

The configuration steps for the agent are detailed in the following sections.

For Windows systems
To configure the IBM Tivoli Composite Application Manager for Response Time
Tracking agent on Windows systems, perform the following steps:

1. From your Windows desktop on your server where you installed the
IBM Tivoli Composite Application Manager for Response Time Tracking
IBM Tivoli Monitoring 6.1 agent, click Start → Programs → IBM Tivoli
Monitoring → Manage Tivoli Enterprise Monitoring Services.

2. Right-click Response Time Tracking Agent. Click Reconfigure, as shown
in Figure 3-43.

Figure 3-43 Configuring monitoring agent for IBM Tivoli Composite Application Manager
for RTT through monitoring console

192 Tivoli Management Services Warehouse and Reporting

3. In the advanced configuration window, click OK, as shown in Figure 3-44.

Figure 3-44 Configuring Tivoli agent for IBM Tivoli Composite Application Manager for
RTT connection protocol

4. In the new window, enter the name of your Tivoli Enterprise Monitoring Server
that you want to connect the agent to and click OK.

 Chapter 3. Warehousing in action 193

5. In the ITCAM for Response Time Tracking Management Server Identity tab
(Figure 3-45), specify the fields, as described in 3.8.1, “IBM Tivoli Composite
Application Manager for Response Time Tracking agent configuration” on
page 189.

Figure 3-45 Configuring IBM Tivoli Composite Application Manager for RTT
management server identity information

194 Tivoli Management Services Warehouse and Reporting

6. In the Response Time Tracking Agent Configuration Options tab
(Figure 3-46), enter the required settings, as described in 3.8.1, “IBM Tivoli
Composite Application Manager for Response Time Tracking agent
configuration” on page 189.

Figure 3-46 Configuring IBM Tivoli Composite Application Manager for RTT agent

 Chapter 3. Warehousing in action 195

7. In the Response Time Tracking Managing Server Database Configuration
Options tab (Figure 3-47), specify the fields as described in 3.8.1, “IBM Tivoli
Composite Application Manager for Response Time Tracking agent
configuration” on page 189. Click OK after you configure the settings as
required.

Figure 3-47 Configuring IBM Tivoli Composite Application Manager for RTT
management server database information

8. Restart the Response Time Tracking agent by double-clicking it. Alternatively,
right-click the agent and select Start.

For Linux or UNIX systems
To configure the IBM Tivoli Composite Application Manager for Response Time
Tracking agent on Linux or UNIX, perform the following steps:

1. Log on to the server and issue the following command from the
%InstallDir%/IBM/ITM/bin directory:

./itmcmd config -A t2

The following line is displayed:

Agent configuration started...

196 Tivoli Management Services Warehouse and Reporting

2. The following questions enable you to configure the configuration options for
the agent. These are explained in more detail in 3.8.1, “IBM Tivoli Composite
Application Manager for Response Time Tracking agent configuration” on
page 189. The settings that are requested are shown in Example 3-7.

Example 3-7 Tivoli Composite Application Manager for RTT configuration options

Edit 'ITCAM for Response Time Tracking Management Server Identity'
settings? (default is: Yes):
Response Time Tracking Management Server Host (default is:):
Response Time Tracking Management Server Port (default is:):
Response Time Tracking User Login ID (default is:):
Response Time Tracking Login Password (default is:):
Is Response Time Tracking Management Server SSL Enabled?
 Type number of item from the below list
 1. Yes
 2. No
 (default is:):
Response Time Tracking Keystore File (default is:):
Response Time Tracking Keystore Password (default is:):
Edit 'Response Time Tracking Agent Configuration Options' settings?
(default is: Yes):
Maximum Timespan for Transaction Reporting in hours (default is: 8):
Maximum Timespan for Instance Selection in hours (default is: 1):
Maximum number of log messages (default is: 100):
Agent Messsage expiration (default is: 7):
Edit 'Response Time Tracking Managing Server Database Configuration
Options' set tings? (default is: Yes):
Select the Database type for Managing Server Database
 Type number of item from the below list
 1. DB2
 2. ORACLE
 (default is:):
Fully qualified hostname of the Managing Server Database Machine
(default is:):
Specify Database Port: default for DB2 is 50000 and for Oracle is 1521
(default is: 50000):
Database Name or SID Name (default is:):
RTT MS Schema User Login Name (default is:):
RTT MS Schema User Login Password (default is:):

 Chapter 3. Warehousing in action 197

3. The agent asks to configure the connection information to the Tivoli
Enterprise Monitoring server. The configuration values are shown in
Example 3-8.

Example 3-8 Tivoli Composite Application Manager for RTT configuration options

Will this agent connect to a TEMS? [YES or NO] (Default is: YES):
TEMS Host Name (Default is: belfast):

Network Protocol [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

 Now choose the next protocol from one of these:
 - ip
 - sna
 - ip.spipe
 - none
Network Protocol 2 (Default is: none):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):

Configure connection for a secondary TEMS? [YES or NO] (Default is:
NO):
Enter Optional Primary Network Name or "none" (Default is: none):

4. When you complete these steps, the following message is displayed:

Agent configuration completed...

The agent is now configured and ready to be started.

You can start the agent by issuing the following command from the
%InstallDir%/IBM/ITM/bin directory:

./itmcmd agent start t2

3.8.2 Collecting the IBM Tivoli Composite Application Manager for
Response Time Tracking agent historical data

As mentioned previously, the mechanism for collecting IBM Tivoli Monitoring
agent data is the same for all agents. Therefore, enabling the historical collection
for the IBM Tivoli Composite Application Manager for RTT agent involves
configuring the historical collection as detailed in 3.5, “Configuring historical data
collection” on page 147.

198 Tivoli Management Services Warehouse and Reporting

In the product name field of the historical configuration window, select ITCAM
Response Time Tracking. The default groups for the IBM Tivoli Composite
Application Manager Response Time Tracking agent are shown in Figure 3-48.

Figure 3-48 IBM Tivoli Composite Application Manager for RTT Tracking agent default
historical groups

3.8.3 IBM Tivoli Composite Application Manager for Response Time
Tracking agent workspace examples

IBM Tivoli Composite Application Manager for Response Time Tracking provides
the following predefined workspaces, which are organized by navigator item:

� Response Time Tracking navigator item

– Response Time Tracking workspace
– Historical Monthly Summarization for Reporting Groups workspace

 Chapter 3. Warehousing in action 199

� All Reporting Groups navigator item

– Response Time Tracking Reporting Groups workspace

� Applications navigator item

– Response Time Tracking Reporting Group Applications workspace

� Customers navigator item

– Response Time Tracking Reporting Group Customers workspace

� Locations navigator item

– Response Time Tracking Reporting Group Locations workspace

Some examples of the Tivoli Monitoring for IBM Tivoli Composite Application
Manager for Response Time Tracking workspaces are shown in Figure 3-49 and
Figure 3-50.

Figure 3-49 Tivoli Composite Application Manager for RTT: Response Time Tracking workspace example

200 Tivoli Management Services Warehouse and Reporting

Figure 3-50 Tivoli Composite Application Manager for RTT: Response Time Tracking Reporting Groups
workspace example

3.9 IBM Tivoli Composite Application Manager for
WebSphere and Tivoli Data Warehouse integration

IBM Tivoli Composite Application Manager for WebSphere can be integrated into
the IBM Tivoli Monitoring V6.1 infrastructure. This enables you to exploit fully
IBM Tivoli Monitoring V6.1 functionality such as Tivoli Data Warehouse V2.1,
correlation of WebSphere Application Server information with data from other
IBM Tivoli Monitoring V6.1 agents, and presentation with Tivoli Enterprise Portal.

The Tivoli Enterprise Monitoring Agent collects performance data about the
WebSphere and Java 2 Platform, Enterprise Edition (J2EE) Application Servers
running on a single node from four primary sources:

� Response time data for application server requests from the IBM Tivoli
Composite Application Manager for WebSphere and J2EE data collector

� Resource data from the WebSphere and J2EE Performance Monitoring
Infrastructure

 Chapter 3. Warehousing in action 201

� WebSphere Application and J2EE Server log messages

� Garbage collector activity recorded in the verbose Garbage Collector trace of
Java Virtual Machine

The Tivoli Enterprise Monitoring Agent accumulates data from all of these
sources and ships them to the Tivoli Enterprise Monitoring Server. The Tivoli
Enterprise Monitoring Server merges the data with monitoring data from other
agents (including other IBM Tivoli Composite Application Manager for
WebSphere agents) and ships them to the Tivoli Enterprise Portal Server for
display on the various Tivoli Enterprise Portal clients attached to it.

Figure 3-51 shows the interconnectivity structure.

Figure 3-51 IBM Tivoli Composite Application Manager for WebSphere and IBM Tivoli
Monitoring V6.1

WebSphere

Custom Service
am Publish databcm

JVMTI PMIJMX

Tivoli Enterprise
Management Agent

KY
N

To TEMS

202 Tivoli Management Services Warehouse and Reporting

The data sources that are employed by IBM Tivoli Composite Application
Manager for WebSphere are:

� Java Virtual Machine Tool Interface (JVMTI) garbage collection data, method
trace, stack trace, CPU time, and heap dump

� Java Management Extensions (JMX™) system resources

� System Management Facility (SMF) system resources (z/OS only)

� Performance Monitoring Infrastructure (PMI) system resources (WebSphere
only)

� OS services SCC, platform CPU, and its environment

� Byte Code Modification (BCM) instrumentation of some classes

3.9.1 IBM Tivoli Composite Application Manager for WebSphere
agent configuration

You must provide the following configuration values for the agent to operate.
When configuring an agent, a panel is displayed. Use this panel to type in each
value. When there is a default value, this will be pre-entered into the field. If a
field represents a password, there are two entry fields that are displayed. You
must enter the same value in each field. The values you type is not displayed.
This helps maintain the security of these values. All mandatory values for
configuration are shown in bold.

The following fields are defined for this agent:

� Tab: Basic

� Field: Request Data Monitoring

� Explanation: Use this field to define the level of request data you want to
gather.

� Tab: Basic

� Field: Request Data Monitoring Method

� Explanation: Use this field to define the method you want to use to collect the
request data, either on demand or at a fixed interval.

� Tab: Basic

� Field: Resource Data Monitoring

� Explanation: Use this field to define whether you want the agent to collect
resource data.

 Chapter 3. Warehousing in action 203

� Tab: Basic

� Field: Resource Data Monitoring Method

� Explanation: Use this field to define the method you want to use to collect the
resource data, either on demand or at a fixed interval.

� Tab: Basic

� Field: Garbage Collection Monitoring

� Explanation: Use this field to define whether you want the agent to collect
garbage collection data.

� Tab: Agent (Advanced)

� Field: Alternative Node ID for identifying this Agent

� Explanation: Use this field to define an alternative ID for identifying this agent
in the TEP.

� Tab: Agent (Advanced)

� Field: ITCAM for WebSphere Agent Listening Port

� Explanation: Use this field to define the listening port for the IBM Tivoli
Composite Application Manager for WebSphere agent so that the Tivoli
Enterprise Monitoring Agent can communicate with it to gather data.

� Tab: Agent (Advanced)

� Field: Maximum Number Of Agent Log Events

� Explanation: Use this field to define the maximum number of log events the
agent will display in the TEP.

� Tab: Agent (Advanced)

� Field: Custom MBeans Monitoring Port

� Explanation: Use this field to define the listening port for the custom MBeans
so that the Tivoli Enterprise Monitoring Agent can communicate with it to
gather data.

� Tab: Agent (Advanced)

� Field: Custom MBeans Monitoring Enabled

� Explanation: Use this field to define whether you want the agent to collect
custom MBeans data.

204 Tivoli Management Services Warehouse and Reporting

� Tab: Collection (Advanced)

� Field: Request Data On Demand Maximum Sample Age (sec)

� Explanation: Use this field to define the maximum sample age in seconds
when the agent is collecting request data on demand.

� Tab: Collection (Advanced)

� Field: Request Data Fixed Interval between Collections (sec)

� Explanation: Use this field to define the interval in seconds between data
requests when the agent is collecting request data at a fixed interval.

� Tab: Collection (Advanced)

� Field: Request Data Sampling Rate (%)

� Explanation: Use this field to define the sampling rate in percent when the
agent is collecting request data.

� Tab: Collection (Advanced)

� Field: Resource Data On Demand Maximum Sample Age (sec)

� Explanation: Use this field to define the maximum sample age in seconds
when the agent is collecting resource data on demand.

� Tab: Collection (Advanced)

� Field: Resource Data Fixed Interval between Collections (sec)

� Explanation: Use this field to define the interval in seconds between data
requests when the agent is collecting resource data at a fixed interval.

� Tab: Collection (Advanced)

� Field: Garbage Collection Polling Interval (sec)

� Explanation: Use this field to define the polling interval in seconds the Tivoli
Enterprise Monitoring Agent will use to query data if garbage data collection is
enabled.

� Tab: Collection (Advanced)

� Field: Log Scan Polling Interval (sec)

� Explanation: Use this field to define the polling interval in seconds the Tivoli
Enterprise Monitoring Agent will use to query the logs for data.

 Chapter 3. Warehousing in action 205

� Tab: Application Servers (Advanced)

� Field: New

� Explanation: Use this field to define new advanced configuration options for
the application servers tracked by the IBM Tivoli Composite Application
Manager for WebSphere agent.

The configuration steps for the agent are detailed in the following sections.

For Windows systems
To configure the IBM Tivoli Composite Application Manager for WebSphere
agent on Windows system, perform the following steps:

1. From your Windows desktop on your server where you installed the
IBM Tivoli Composite Application Manager for WebSphere IBM Tivoli
Monitoring 6.1 agent, click Start → Programs → IBM Tivoli Monitoring →
Manage Tivoli Enterprise Monitoring Services.

2. Right-click ITCAM for WebSphere Agent. Click Reconfigure, as shown in
Figure 3-52.

Figure 3-52 Configuring monitoring agent for IBM Tivoli Composite Application Manager
for WebSphere through monitoring console

206 Tivoli Management Services Warehouse and Reporting

3. In the Advanced Configuration window, click OK, as shown in Figure 3-53.

Figure 3-53 Configuring Tivoli agent for IBM Tivoli Composite Application Manager for
RTT connection protocol

4. In the new window, enter the name of your Tivoli Enterprise Monitoring Server
that you want to connect the agent to and click OK.

 Chapter 3. Warehousing in action 207

5. In the Basic tab (Figure 3-54), enter the fields as described in 3.9.1, “IBM
Tivoli Composite Application Manager for WebSphere agent configuration” on
page 203.

Figure 3-54 Configuring IBM Tivoli Composite Application Manager for WebSphere:
Basic information

208 Tivoli Management Services Warehouse and Reporting

6. In the Agent (Advanced) tab (Figure 3-55), enter the required settings as
described in 3.9.1, “IBM Tivoli Composite Application Manager for
WebSphere agent configuration” on page 203.

Figure 3-55 Configuring Tivoli Composite Application Manager for WebSphere:
Advanced agent configuration

 Chapter 3. Warehousing in action 209

7. In the Collection (Advanced) tab (Figure 3-56), enter the fields as described in
3.9.1, “IBM Tivoli Composite Application Manager for WebSphere agent
configuration” on page 203.

Figure 3-56 Configuring Tivoli Composite Application Manager for WebSphere advanced
collection information

210 Tivoli Management Services Warehouse and Reporting

8. In the Application Servers (Advanced) tab (Figure 3-57), enter the fields as
described in 3.9.1, “IBM Tivoli Composite Application Manager for
WebSphere agent configuration” on page 203. Click OK after you configure
the settings as required.

Figure 3-57 Configuring Tivoli Composite Application Manager for WebSphere:
Advanced application server information

9. Restart the IBM Tivoli Composite Application Manager for WebSphere
Agent by double-clicking it. Alternatively, right-click it and select Start.

For Linux or UNIX systems
To configure the IBM Tivoli Composite Application Manager for WebSphere
agent on Linux or UNIX systems, perform the following steps:

1. Log in to the server and issue the following command from the
%InstallDir%/IBM/ITM/bin directory:

./itmcmd config -A yn

The following line is displayed:

Agent configuration started...

 Chapter 3. Warehousing in action 211

2. The following questions enable you to configure the configuration options for
the agent. These are explained in more detail in 3.9.1, “IBM Tivoli Composite
Application Manager for WebSphere agent configuration” on page 203. The
settings that are requested are shown in Example 3-9.

Example 3-9 IBM Tivoli Composite Application Manager for WebSphere agent
configuration options

Edit 'Basic' settings? (default is: Yes):
Request Data Monitoring
 Type number of item from the below list
 1. Disable
 2. Level1
 3. Level2
 (default is: LEVEL1):
Request Data Monitoring Method
 Type number of item from the below list
 1. Fixed Interval
 2. On Demand
 (default is: FIXEDINTERVAL):
Resource Data Monitoring
 Type number of item from the below list
 1. Disable
 2. Enable
 (default is: ENABLE):
Resource Data Monitoring Method
 Type number of item from the below list
 1. Fixed Interval
 2. On Demand
 (default is: ONDEMAND):
Garbage Collection Monitoring
 Type number of item from the below list
 1. Disable
 2. Enable
 (default is: ENABLE):
Edit 'Agent (Advanced)' settings? (default is: Yes):

Edit 'Collection (Advanced)' settings? (default is: Yes):

212 Tivoli Management Services Warehouse and Reporting

3. The agent asks to configure connection information to the Tivoli Enterprise
Monitoring Server. The configuration values are shown in Example 3-10.

Example 3-10 IBM Tivoli Composite Application Manager for WebSphere agent
configuration options

Will this agent connect to a TEMS? [YES or NO] (Default is: YES):
TEMS Host Name (Default is: belfast):

Network Protocol [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

 Now choose the next protocol from one of these:
 - ip
 - sna
 - ip.spipe
 - none
Network Protocol 2 (Default is: none):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):

Configure connection for a secondary TEMS? [YES or NO] (Default is:
NO):
Enter Optional Primary Network Name or "none" (Default is: none):

4. When you complete these steps, the following message is displayed:

Agent configuration completed...

The agent is now configured and ready to be started. You can start the agent
by issuing the following command from the %InstallDir%/IBM/ITM/bin
directory:

./itmcmd agent start yn

3.9.2 Collecting the IBM Tivoli Composite Application Manager for
WebSphere agent historical data

As mentioned previously, the mechanism for collecting IBM Tivoli Monitoring
agent data is the same for all agents. Therefore, enabling the historical collection
for the IBM Tivoli Composite Application Manager for WebSphere agent involves
configuring the historical collection as detailed in 3.5, “Configuring historical data
collection” on page 147.

 Chapter 3. Warehousing in action 213

In the product name field of the historical configuration window, select ITCAM for
WebSphere. The default groups for the IBM Tivoli Composite Application
Manager for WebSphere agent are shown in Figure 3-58.

Figure 3-58 IBM Tivoli Composite Application Manager for WebSphere agent default
historical groups

214 Tivoli Management Services Warehouse and Reporting

3.9.3 IBM Tivoli Composite Application Manager for WebSphere
agent workspace examples

IBM Tivoli Monitoring for IBM Tivoli Composite Application Manager for
WebSphere provides the following predefined workspaces, which are organized
by navigator item:

� WebSphere Agent - Primary navigator item

– WebSphere Agent workspace

� WebSphere App Server - AppSrv01$ navigator item

– WebSphere App Server workspace
– High Availability Manager workspace
– DCS Stacks workspace

� Request Analysis navigator item

– Request Analysis workspace

� Garbage Collection Analysis navigator item

– Garbage Collection Analysis workspace

� Log Analysis navigator item

– Log Analysis workspace

� Pool Analysis navigator item

– Pool Analysis workspace

� Datasources navigator item

– Datasources workspace

� JMS Summary navigator item

– JMS Summary workspace

� Web Applications navigator item

– Web Applications workspace
– Sessions workspace

� EJB™ Containers navigator item

– EJB Containers workspace
– Enterprise Java Beans workspace
– Container Transactions workspace
– Container Object Pools workspace

 Chapter 3. Warehousing in action 215

� DB Connection Pools navigator item

– DB Connection Pools workspace

� J2C Connection Pools navigator item

– J2C Connection Pools workspace

� Thread Pools navigator item

– Thread Pools workspace
– Alarm Manager workspace

� Cache Analysis navigator item

– Cache Analysis workspace

� Workload Management navigator item

– Workload Management workspace

� Scheduler navigator item

– Scheduler workspace

� Web Services navigator item

– Web Services workspace

� Platform Messaging navigator item

– Messaging Engines workspace
– Client Communications workspace
– Messaging Engine Communications workspace
– WMQ Client Link Communications workspace
– WMQ Link Communications workspace

216 Tivoli Management Services Warehouse and Reporting

Some examples of IBM Tivoli Monitoring for IBM Tivoli Composite Application
Manager for WebSphere workspaces are shown Figure 3-59, Figure 3-60, and
Figure 3-61 on page 219.

Figure 3-59 Tivoli Composite Application Manager for WebSphere: WebSphere App Server workspace example

 Chapter 3. Warehousing in action 217

Figure 3-60 IBM Tivoli Composite Application Manager for WebSphere: Pool Analysis workspace example

218 Tivoli Management Services Warehouse and Reporting

Figure 3-61 IBM Tivoli Composite Application Manager for WebSphere: Thread Pools workspace example

3.10 Tivoli Composite Application Manager for SOA and
Tivoli Data Warehouse integration

IBM Tivoli Composite Application Manager for Service-Oriented Architecture
(SOA) can be integrated into the IBM Tivoli Monitoring V6.1 infrastructure. This
enables you to exploit fully IBM Tivoli Monitoring V6.1 functionality such as Tivoli
Data Warehouse V2.1, correlation of SOA related data with that from other
IBM Tivoli Monitoring V6.1 agents, and presentation with Tivoli Enterprise Portal.

IBM Tivoli Composite Application Manager for SOA works with several
application server environments:

� IBM WebSphere Application Server
� Microsoft .NET
� BEA WebLogic server

 Chapter 3. Warehousing in action 219

Figure 3-62 shows the IBM Tivoli Composite Application Manager for SOA data
collection conceptual architecture.

Figure 3-62 IBM Tivoli Composite Application Manager for SOA structure

The monitoring agent data collector is implemented as a Java API for
XML-based RPC (JAX-RPC) handler or service extension that is installed into
the application servers that are hosting the monitored Web services. The handler
is given control when either of the following events occurs:

� A client application invokes a Web service, which is referred to as a
client-side interception.

� The Web service request is received by the hosting application server, which
is referred to as a server-side interception.

The monitoring agent records and collects the monitored information in one or
more local log files. The information is then transferred to Tivoli Enterprise
Monitoring Server and can be archived into a historical database for later
retrieval with IBM Web Services Navigator.

IBM Tivoli Composite Application Manager for SOA 6.0 focuses on the Simple
Object Access Protocol (SOAP) engine of IBM WebSphere Application Server,
WebSphere Service Integration Bus, the Microsoft .NET Framework, and BEA
WebLogic.

ITCAM for SOA
Monitoring agent

Microsoft .NET server

BEA WebLogic server

WebSphere Application
Server

KD4 service
extension

JAX-RPC
handler

JAX-RPC
handler

Data
collector

Data
collector

Data
collector

Data collector
adapter

IRA
Intellignent

Resource Model

log

log

log

configuration

Tivoli Enterprise
Management Server

Tivoli Enterprise Portal
Server

220 Tivoli Management Services Warehouse and Reporting

The Web services data collector supports both J2EE application client and
server container environments, because JAX-RPC handlers are supported only
by these environments. The Web services must be compliant with JSR-109
specifications.

To ensure proper operation of the JAX-RPC handler, verify that the client
applications are written according to the conventions that can be found at:

http://www.jcp.org/aboutJava/communityprocess/final/jsr109/

3.10.1 IBM Tivoli Composite Application Manager for SOA
agent configuration

The IBM Tivoli Composite Application Manager for SOA agent is the only
IBM Tivoli Composite Application Manager agent that does not require any
explicit SOA agent configuration to function correctly. However, the agent still
has to be pointed to a functioning Tivoli Enterprise Monitoring Server.

The configuration steps for the agent are detailed in the following sections.

For Windows systems
To configure the Tivoli Monitoring agent for IBM Tivoli Composite Application
Manager for SOA agent on Windows system, perform the following steps:

1. From your Windows desktop on your server where you installed the
IBM Tivoli Composite Application Manager for WebSphere IBM Tivoli
Monitoring 6.1 agent, click Start → Programs → IBM Tivoli Monitoring →
Manage Tivoli Enterprise Monitoring Services.

 Chapter 3. Warehousing in action 221

http://www.jcp.org/aboutJava/communityprocess/final/jsr109/

2. Right-click ITCAM for SOA Agent. Click Reconfigure, as shown in
Figure 3-63.

Figure 3-63 Configuring monitoring agent for Tivoli Composite Application Manager for
SOA through monitoring console

3. In the Advanced Configuration window, click OK, as shown in Figure 3-64.

Figure 3-64 Configuring Tivoli agent for Tivoli Composite Application Manager for SOA
connection protocol

222 Tivoli Management Services Warehouse and Reporting

4. In the new window, enter the name of your Tivoli Enterprise Monitoring Server
that you want to connect the agent to and click OK.

5. Restart the IBM Tivoli Composite Application Manager for SOA agent by
double-clicking it. Alternatively, you can right-click it and select Start.

For Linux or UNIX systems
To configure the Tivoli Monitoring agent for IBM Tivoli Composite Application
Manager for SOA agent on Linux or UNIX systems, perform the following steps:

1. Log in to the server and issue the following command from the
%InstallDir%/IBM/ITM/bin directory:

./itmcmd config -A d4

The following line is displayed:

Agent configuration started...

2. The agent asks to configure connection information to the Tivoli Enterprise
Monitoring Server. The configuration values are shown in Example 3-11.

Example 3-11 Tivoli Composite Application Manager for SOA configuration options

Will this agent connect to a TEMS? [YES or NO] (Default is: YES):
TEMS Host Name (Default is: belfast):

Network Protocol [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

 Now choose the next protocol from one of these:
 - ip
 - sna
 - ip.spipe
 - none
Network Protocol 2 (Default is: none):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):

Configure connection for a secondary TEMS? [YES or NO] (Default is:
NO):
Enter Optional Primary Network Name or "none" (Default is: none):

3. When you complete these steps, the following message is displayed:

Agent configuration completed...

The agent is now configured and ready to be started. Start the agent by
issuing the following command from the %InstallDir%/IBM/ITM/bin directory:

./itmcmd agent start d4

 Chapter 3. Warehousing in action 223

3.10.2 Enabling IBM Tivoli Composite Application Manager for SOA
monitoring agent data collectors

As stated previously, there is no explicit IBM Tivoli Composite Application
Manager for SOA agent configuration required for the agent to function.
However, you have to enable the data collectors for the application servers in
order for them to collect data correctly. This depends on the application server
environment that you have installed on this application server.

After the IBM Tivoli Composite Application Manager for SOA monitoring agent is
installed on the application server, the data collector directory structure is
created in the Tivoli Enterprise Monitoring Agent base directory as follows:

� For Windows: %TEMA_HOME%\CMA
� For UNIX: $TEMA_HOME/<OS_INTERP>/d4
� For z/OS: <TEMA_HOME>

This directory contains the structure shown in Figure 3-65.

Figure 3-65 IBM Tivoli Composite Application Manager for SOA agent directory structure

These directories contain all the files required to run the data collector on
IBM WebSphere Application Server, Microsoft .NET, and BEA WebLogic.

KD4

bin

lib

config

logs

224 Tivoli Management Services Warehouse and Reporting

Depending on your operating system platform, issue KD4configDC.sh or
KD4configDC.bat. The arguments for this command vary depending on the
application server environment. See IBM Tivoli Composite Application Manger
for SOA: Installing and Using Project Crystal, GC32-9492, for more detailed
information about the KD4configDC options.

Configuring for WebSphere Application Server data collector
For IBM WebSphere Application Server, run the following command from a
command prompt:

KD4configDC -enable -env 1 <WAS_HOME>

This command enables IBM WebSphere Application Server to use the KD4 data
collector as a JAX-RPC handler. The kd4dcagent.jar file is installed in the
%WAS_HOME%/lib/ext directory.

After you configure the IBM Tivoli Composite Application Manager for SOA
monitoring agent data collector, stop and restart IBM WebSphere Application
Server.

Configuring for Microsoft .NET data collector
For Microsoft .NET application server, run the following command from a
command prompt:

KD4configDC -enable -env 2

No additional action is required.

Note: An installation script called KD4configDC is used to configure the data
collector for all platforms. However, each platform requires its own additional
parameters and steps that you must perform to enable monitoring of Web
services.

On IBM WebSphere Application Server and BEA WebLogic, restart the
application server after configuring the data collector. Microsoft .NET
application server does not require a restart.

Note: If you have set the WAS_HOME environment variable, the configuration
program can be invoked without any argument. The WAS_HOME
environment variable is typically set using the setupCmdLine program from
WebSphere.

 Chapter 3. Warehousing in action 225

Configuring for BEA WebLogic data collector
BEA WebLogic client applications do not have deployment descriptors, therefore
you must register the data collector handler using a Java program. For BEA
WebLogic application server, the KD4configDC command adds the JAX-RPC
handler intercept into the web-services.xml deployment descriptor for each
deployed Web service running on a local BEA WebLogic application server.

You must add the data collector to BEA WebLogic handler chains for each Web
service application individually. The KD4configDC script will do this, but if a new
Web service is installed at a later time, run KD4configDC again to configure the
new Web service.

Before you can run the KD4configDC command, you must perform some
additional steps to prepare for both client and server side installation.

1. Add the IBM Tivoli Composite Application Manager for SOA handler with a
program on the BEA WebLogic client side that uses the
javax.xml.rpc.handler.HandlerInfo and javax.xml.rpc.handler.HandlerRegistry
classes. See the code extract in Example 3-12 to enable a BEA WebLogic
client application. For more information, see the following Web site:

http://e-docs.bea.com/wls/docs81/webserv/interceptors.html

Example 3-12 Enabling JAX-RPC handler

import java.util.ArrayList;
import java.io.IOException;
import java.xml.namespace.QName;
import java.xml.rpc.ServiceException;
import java.xml.rpc.handler.HandlerInfo;
import java.xml.rpc.handler.HandlerRegistry

public main(String wsdl) {
try {

. . .
QName listQname[] = new QName[1];
listQName[0] = new QName(“http://www.ibm.com/websight”,

“WEBSIGHT_SOAP”);
ArrayList handlerList = new ArrayList();
handlerList.add(new

HandlerInfo(com.ibm.management.soa.agent.bea.ITMBEAClientHandler.class,
null, listQName));

Note: Unlike IBM WebSphere Application Server and Microsoft .NET
application servers that allow the data collector to be global in the scope, BEA
WebLogic does not have the concept of a global handler.

226 Tivoli Management Services Warehouse and Reporting

http://e-docs.bea.com/wls/docs81/webserv/interceptors.html
http://e-docs.bea.com/wls/docs81/webserv/interceptors.html

HandlerRegistry registry = service.getHandlerRegistry();
registry.setHandlerChain(portName, handlerList);

} catch (IOException e) {
} catch (ServiceException e) {
}

}
}

2. Before running KD4configDC on the BEA WebLogic server side:

– To modify the BEA WebLogic Server Classpath for all domains, use the
commEnv.sh or commEnv.bat script in WebLogic_Home/common/bin and
append the full path of kd4dcagent.jar to the WEBLOGIC_CLASSPATH
environment variable.

– To modify the classpath for a specific BEA WebLogic Server domain, edit
the setDomainEnv.sh or setDomainEnv.cmd script in the domain’s \bin
directory, and prepend the fully qualified path of kd4dcagent.jar file onto
the PRE_CLASSPATH environment variable.

3. Stop and restart the BEA WebLogic Server and set the BEA WebLogic Server
environment by sourcing the setDomainEnv or setEnv command before
running the KD4configDC script.

4. Run the KD4configDC script at the command prompt:

KD4configDC.[sh|bat] -enable -env 3 “t3://localhost:7001” weblogic
weblogic

3.10.3 Collecting the IBM Tivoli Composite Application Manager for
SOA agent historical data

As mentioned previously, the mechanism for collecting IBM Tivoli Monitoring
agent data is the same for all agents. Therefore, enabling the historical collection
for the IBM Tivoli Composite Application Manager for SOA agent involves
configuring the historical collection as detailed in 3.5, “Configuring historical data
collection” on page 147.

 Chapter 3. Warehousing in action 227

In the product name field of the historical configuration window, select ITCAM for
SOA. The default groups for the IBM Tivoli Composite Application Manager for
SOA agent are shown in Figure 3-66.

Figure 3-66 Tivoli Composite Application Manager for SOA agent default historical groups

Note: The default groups shown in Figure 3-66 can differ depending on which
applications servers data collectors are enabled.

228 Tivoli Management Services Warehouse and Reporting

3.10.4 IBM Tivoli Composite Application Manager for SOA agent
workspace examples

IBM Tivoli Composite Application Manager for SOA provides the following
predefined workspaces, which are organized by navigator item:

� Services Management Agent navigator item

– Services Management Agent workspace

� Message Arrival navigator item

– Message Arrival workspace

� Services Management Agent Environment navigator item

– Application Server Services Management workspace

� Performance Summary navigator item

– Performance Summary workspace

� Message Summary navigator item

– Message Count workspace

� Faults Summary navigator item

– Faults Summary workspace

To obtain more detailed information about these workspaces, see IBM Tivoli
Composite Application Manger for SOA: Installing and Using Project Crystal,
GC32-9492. Some examples of the Tivoli Monitoring for IBM Tivoli Composite
Application Manager for SOA workspaces are shown in Figure 3-67, Figure 3-68,
and Figure 3-69 on page 232.

 Chapter 3. Warehousing in action 229

Figure 3-67 Tivoli Composite Application Manager for SOA: Services Management Agent Environment
workspace example

230 Tivoli Management Services Warehouse and Reporting

Figure 3-68 Tivoli Composite Application Manager for SOA: Performance Summary workspace example

 Chapter 3. Warehousing in action 231

Figure 3-69 Tivoli Composite Application Manager for SOA: Message Summary workspace example

232 Tivoli Management Services Warehouse and Reporting

Chapter 4. IBM Tivoli Data Warehouse
tuning

This chapter provides information about tuning the Tivoli Data Warehouse by
itself, the databases that serve it, and how to tune the Structured Query
Language (SQL) code that is used on reports against the Tivoli Data Warehouse.
The target audience of this chapter is database administrators.

This chapter discusses the following topics:

� “Using data marts” on page 235

� “Manual creation of data tables” on page 241

� “Batch option” on page 243

� “Database tuning” on page 243

� “Database parameter tuning” on page 244

4

Note: Some of the material in this chapter is based on a whitepaper
(“Relational Database Design and Performance Tuning for DB2 Database
Servers”) written by Edward Bernal from IBM USA. You can download this
whitepaper at:
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/fe582a1e48331b55
85256de50062ae1c/546c74feec117c118625718400173a3e?OpenDocument.

© Copyright IBM Corp. 2007. All rights reserved. 233

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/fe582a1e48331b5585256de50062ae1c/546c74feec117c118625718400173a3e?OpenDocument
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/fe582a1e48331b5585256de50062ae1c/546c74feec117c118625718400173a3e?OpenDocument

� “Physical design considerations” on page 253

� “SQL tuning” on page 277

234 Tivoli Management Services Warehouse and Reporting

4.1 Using data marts

A data mart is a specialized subset version of a data warehouse. They contain a
snapshot of operational data just as the data warehouses, which helps business
people to strategize based on analyses of past trends and experiences. The key
difference between data warehouse and data mart is that the creation of a data
mart is predicated on a specific, predefined need for a certain grouping and
configuration of select data. Data marts can satisfy many objectives, such as
departmental or organizational control, easier and faster to design and build, fast
payback and faster query response times.

The data mart typically contains a subset of corporate data that is of value to a
specific business unit, department, or set of users. This subset consists of
historical, summarized, and possibly detailed data captured from transaction
processing systems or from an enterprise data warehouse. It is important to
realize that a data mart is defined by the functional scope of its users, and not by
the size of the data mart database. Most data marts today involve less than
100 GB of data; some are larger. However, it is expected that as data mart usage
increases, they will continue to increase in size.

The primary purposes of a data mart can be summarized as follows:

� Provides fast access to information for specific analytical needs
� Controls user access to the information
� Represents the user view and data interface to the data warehouse
� Creates a multidimensional view of data for enhanced analysis
� Offers multiple slice-and-dice capabilities for detailed data analysis
� Stores pre-aggregated information for faster response times

4.1.1 Better reporting performance

Reporting against data marts has a better performance compared to reporting
against the main data warehouse, because data marts only have a subset of the
data available in the data warehouse, making input/output (I/O) less demanding.
Additionally, because the filtering has already been applied at the mart extract,
transform, and load (ETL), the reporting queries become much smaller. Smaller
queries that are performing on a small subset of data are, of course, easier to
tune. Therefore, the client experiences a better reporting performance.

4.1.2 Data mart scenario

To better explain to you the data mart concepts, we describe a small scenario in
the context of Tivoli Data Warehouse database. We implement this scenario

 Chapter 4. IBM Tivoli Data Warehouse tuning 235

using SQL scripts, but there are some tools that you can use for this purpose.
These are described in “Other tools to create data marts” on page 239.

The IT department has a team focused only on the Windows operating system
(OS) administration. This team is located in another country and not in the
country where the main office is located. Their requirements are:

� Access just their server’s data

� Access data even if the network between the main data center and the local
data center is down

� Access all data that is already available in the main data warehouse

� Increase the performance on the database for the reporting services

As you can see, we require a dependent data mart to satisfy these requirements.
Because the Windows OS administration team is going to access the data that
already exists in the main data warehouse, why not just create a set of database
views that use the main data warehouse as their base tables? We can do that;
however, the performance will not be improved, therefore the last requirement will
not be achieved. The second requirement too will not be achieved, because the
team will not be able to access the main data warehouse if the network
connection between the main data center and the local data center is down.

Even though the creation of a set of views is not suitable to this scenario, they
might be used in cases where access to the data warehouse must be controlled
not by tables, but by columns and rows. By using views, you can force specific
user IDs to access only data that matters to them. One example is the creation of
views based on the NT_System table, for each IT Support team so that each one
of them can only access data that matters to them. This filter can be achieved
using the WHERE statement on the SQL that is used for creating the view.

In this example, we use materialized query table (MQT) instead of regular views
and tables. For more information about materialized query table, see
“Materialized query table” on page 259.

Our scenario is based on two databases that are stored on different servers.
Because MQT cannot see the target data directly, we have to create federated
database objects. The first step in this process is the creation of the wrapper, as
shown in Example 4-1. A wrapper is a mechanism by which a federated server
can interact with certain types of data sources, in this case DB2 itself.

Example 4-1 Creating wrapper

CREATE WRAPPER "DB2"
 LIBRARY 'db2drda.dll'
 OPTIONS(ADD DB2_FENCED 'N');

236 Tivoli Management Services Warehouse and Reporting

Now we have to create a server definition, which defines a data source to a
federated database. It works similar to an Open Database Connectivity (ODBC)
definition used to connect to any database. When you register the server
definition, the federated server connects to the DB2 server and binds packages
to the database. Because the information for authorization and password is not
stored in the federated global catalog, you must include them in the server
definition.

Example 4-2 shows how to create a server definition.

Example 4-2 Creating a server definition

CREATE SERVER WAREHOUS
 TYPE DB2/UDB VERSION '8.2'
 WRAPPER "DB2"
 AUTHID "itmuser" PASSWORD "*****"
 OPTIONS(ADD DBNAME 'WAREHOUS', PASSWORD 'Y');

Now we create the user mapping, as shown in Example 4-3. This is important,
because without it we have to connect manually every time we want to run a
select statement or any other SQL statement in a table that exists in a different
server. Therefore, when you attempt to access another database server, in this
case DB2, the federated server establishes a connection to the data source
using a user ID and password that are valid for that data source. This valid user
ID and password are defined when you create an association (a user mapping)
between the federated server user ID and password and the corresponding data
source user ID and password.

Example 4-3 Creating user mapping

CREATE USER MAPPING FOR "DB2ADMIN" SERVER "WAREHOUS"
 OPTIONS (ADD REMOTE_AUTHID 'itmuser', ADD REMOTE_PASSWORD '*****');

At this point, we have finished all the steps required to connect to the source
server. We now have to register one distinct nickname for each table or view that
we want to access in our local database. Example 4-4 shows how to create
nicknames.

Example 4-4 Creating nicknames

CREATE NICKNAME DENISV.NT_PROCESSOR
 FOR WAREHOUS.ITMUSER."NT_Processor";
CREATE NICKNAME DENISV.NT_LOGICAL_DISK
 FOR WAREHOUS.ITMUSER."NT_Logical_Disk";
CREATE NICKNAME DENISV.NT_MEMORY
 FOR WAREHOUS.ITMUSER."NT_Memory";

 Chapter 4. IBM Tivoli Data Warehouse tuning 237

CREATE NICKNAME DENISV.NT_PHYSICAL_DISK
 FOR WAREHOUS.ITMUSER."NT_Physical_Disk";
CREATE NICKNAME DENISV.NT_SERVER
 FOR WAREHOUS.ITMUSER."NT_Server";
CREATE NICKNAME DENISV.NT_SYSTEM
 FOR WAREHOUS.ITMUSER."NT_System";

If you want, you can run any select statement in one of the nicknames created
previously (see Example 4-5).

Example 4-5 Querying the nicknames

select * from DENISV.NT_PROCESSOR

Result:
TMZDIFF WRITETIME Server_Name
------- ---------------- ----------------- ...
25200 1061003165536000 Primary:BERLIN:NT ...
25200 1061003165536001 Primary:BERLIN:NT ...
25200 1061003165536002 Primary:BERLIN:NT ...
25200 1061003170036000 Primary:BERLIN:NT ...

We create the MQT, as shown in Example 4-6.

Example 4-6 Creating MQTs

create table mqt.disk_usage
 (Day,Server_Name,Disk_Name,Max_Percent_Used,AVG_Free_Megabytes)
as (select WRITETIME,
 "Server_Name",
 "Disk_Name",
 "MAX___Used",
 "AVG_Free_Megabytes"
 from DENISV.NT_Logical_Disk_D
 where "Server_Name" in ('Primary:FLORENCE:NT',
 'Primary:BERLIN:NT'))
data initially deferred refresh deferred;

create table mqt.nt_system
as (select *
 from DENISV.NT_SYSTEM
 where "Server_Name" in ('Primary:FLORENCE:NT',
 'Primary:BERLIN:NT'))
data initially deferred refresh deferred;

238 Tivoli Management Services Warehouse and Reporting

You can double-check the creation by performing a select statement against any
of the MQT or checking it in the DB2 catalog tables. Example 4-7 shows the
process of querying an MQT.

Example 4-7 Querying a MQT

select TMZDIFF, WRITETIME, “Server_Name”
 from mqt.nt_system

Result:
TMZDIFF WRITETIME Server_Name
------- ---------------- -----------------
25200 1061003165541000 Primary:BERLIN:NT
25200 1061003170041000 Primary:BERLIN:NT
25200 1061003170541000 Primary:BERLIN:NT
28800 1061103141503000 Primary:BERLIN:NT

Example 4-8 shows how to double-check the creation of the MQT.

Example 4-8 Double-checking the creation of the MQT

select name, creator, type
 from sysibm.systables
 where type='S'
 and creator='MQT'

Result:
NAME CREATOR TYPE
--------------- ------- ----
DISK_USAGE MQT S
NT_SYSTEM MQT S

Repeat the MQT creation step for each table that you want to have access in
your local database. The main advantage of the MQT is that they work like a
view, but they can store the information locally.

Other tools to create data marts
The data mart scenario in the previous scenario can also be implemented using
IBM DB2 DataPropagator™, also known as DPROP or DPROP-R.

Tip: In these examples, we have chosen the refresh deferred option, which
instructs DB2 not to automatically refresh the tables. You might want to
change this option to immediate if you want so that you do not have to keep
refreshing the tables manually or using a job.

 Chapter 4. IBM Tivoli Data Warehouse tuning 239

Using DPROP you can perform the following functions:

� Manage scheduling: You can manage the schedule of the replication table by
table or many tables all together using subscriptions sets. You can specify
that the movement of data takes place on:

– Designated time intervals, therefore you can balance the workload in the
servers and network

– Continuously

– Event-driven

� Transformation: Data can be filtered either horizontally or vertically so that
only relevant data is replicated, and transformation can be applied inline with
the data movement using standard SQL expressions or stored procedure
execution.

� Distribution topologies: DPROP supports distribution (moving data from one
database to many) and consolidation (moving data from many databases to
one) scenarios. It also supports plain and simple database replication to
make a replica copy. You can even have all the changes done in the replica
sent and replicated in the original database, also known in this case as the
source database.

You can find more information about IBM DB2 DataPropagator at:

http://www-306.ibm.com/software/data/integration/replication

Another tool that you might want to use is IBM DB2 Data Warehouse Edition.
This is a special version of DB2 database server. It is designed for data
warehousing, analytics, OLTP, and mixed workloads, and extends DB2
Enterprise Server Edition to provide real-time data insight and decision support.
It also provides an infrastructure for warehouse building and maintenance,
including tools for application design, deployment, execution, and administration.

You can find more information about IBM DB2 Data Warehouse Edition at:

http://www-306.ibm.com/software/data/db2/dwe/

You can also use WebSphere DataStage to integrate data across multiple and
varied types, and high volumes of data sources and target applications in the
time available. This is a powerful ETL tool.

You can find more information at:

http://www-306.ibm.com/software/data/integration/datastage/

240 Tivoli Management Services Warehouse and Reporting

http://www-306.ibm.com/software/data/integration/replication/
http://www-306.ibm.com/software/data/db2/dwe/
http://www-306.ibm.com/software/data/integration/datastage/

4.2 Manual creation of data tables

Not all database administrators (DBAs) are happy about the idea of an
application having the ability to create tables and indexes in a database that the
DBAs support. It might be a better idea to have the ability to create the tables
used in Tivoli Data Warehouse manually.

4.2.1 Benefits

There are many benefits to manually creating the tables beforehand rather than
letting the application create them:

� Allows the DBA to restrict the rights that IBM Tivoli Monitoring has to the
database

� Allows the DBA to apply any standards for tables and indexes

� Allows the data and the indexes to be placed in separate table spaces to
increase performance

4.2.2 Procedure

To manually create the raw tables, there are several files in the warehouse
database that are necessary. See Table 4-1 for more information about the files.

Table 4-1 Files required for manual table creation

Note: You have to install at least Tivoli Data Warehouse FP02 in your
environment to use this feature. Also this is only available for Windows
environment.

Required files Name of the file

Migration jar file %CANDLE_HOME%\TMAITM6\khdmig.jar

Main execution script %CANDLE_HOME%\TMAITM6\migratewarehouse.bat

Configuration file %CANDLE_HOME%\TMAITM6\KHDENV_MIG

Portal jar files cnp.jar
cnp_vbjorball.jar
util.jar
kjrall.jar
browser.jar

 Chapter 4. IBM Tivoli Data Warehouse tuning 241

The following list shows several variables that you have to define in the
configuration file:

� KHD_CNP_SERVER_HOST=TEPS_Server
� KHD_CNP_SERVER_PORT=Port
� KHD_TARGET_JDBC_DRIVER=Driver
� KHD_TARGET_URL=Url
� KHD_TARGET_DATABASE_SCHEMA=Schema
� KHD_TARGET_DATABASE_USER=User
� KHD_TARGET_DATABASE_PASSWORD=Password
� KHD_TOOL_OPTION=CREATE_DDL

After you edit these files to match the environment, run the main execution script.
The script connects to the Tivoli Enterprise Portal Server database and gathers
information about what agents are present in the environment. The script then
takes this information and creates the Tivoli Data Warehouse raw tables. Several
SQL files are created in the output directory. In Table 4-2, vendor equals DB2,
MSSQL, ORACLE, depending on the settings of the TARGET database.

Table 4-2 SQL files created

When the main execution script is finished, the SQL files can be edited to
conform to any standards that are used by the DBAs. The changes, if any, have
been made to use the database commands to process the SQL files.

Database connection DB2: db2jcc_license_cu.jar, db2cc.jar
MSSQL: sqljdbc.jar
Oracle: ojdbc14.jar

Output directory %CANDLE_HOME%\TMAITM6\SQLLIB

File name Description

KHD_vendor_crt_tbl.sql SQL statements to create the tables

KHD_vendor_drp_tbl.sql SQL statements to drop the tables

KHD_vendor_crt_idx.sql SQL statements to create the indexes

KHD_vendor_drp_idx.sql SQL statements to drop the indexes

KHD_vendor_ins_whid.sql SQL statements to insert values in the WAREHOUSEID
table

KHD_vendor_del_whid.sql SQL statements to delete values from the
WAREHOUSEID table

Required files Name of the file

242 Tivoli Management Services Warehouse and Reporting

4.3 Batch option

Use this option to improve the performance when the database is not local. The
Warehouse Proxy agent can then submit multiple execute statements to the
Tivoli Data Warehouse database as a batch:

� Windows

To set this option, edit the KHDENV file and add the variable
KHD_BATCH_USE=Y.

� Linux or UNIX

– Batch processing is one of the features provided with the Java Database
Connectivity 2.0 (JDBC 2.0) application programming interface (API). The
JDBC driver that is selected must support the batch feature to use this
option.

– To set this option, select the Use Batch check box on the configuration
panel. This updates the KHD_BATCH_USE variable to Y in the hd.ini file.

4.4 Database tuning

The warehouse database can be implemented using one of the three supported
relational databases: DB2, Oracle or Microsoft SQL Server. It is critical that the
database supporting the warehouse is correctly configured. Changing the
database configuration from a reasonable to an ideal configuration might yield a
small performance improvement, but a badly configured database can seriously
impede the capabilities of the warehouse.

When we talk about relational database management system (RDBMS) tuning
for Tivoli Data Warehouse performance optimization, there are two areas that
have to be considered. These are:

� The overall warehouse database tuning (for data gathering and so on)
� The reporting performance (against the warehouse database)

The overall warehouse database tuning is discussed in 4.5, “Database
parameter tuning” on page 244 and 4.6, “Physical design considerations” on
page 253. For information about optimizing the reporting performance, see 4.7,
“SQL tuning” on page 277.

 Chapter 4. IBM Tivoli Data Warehouse tuning 243

4.5 Database parameter tuning

In this section, we cover some fine-tuning tips for database configuration. Note
that we focus only on the actions (or settings) that are applicable in a Tivoli Data
Warehouse environment, because a Tivoli Data Warehouse user does not have
control over all the possible performance optimization actions (such as changing
the table structure, creating indexes) in this environment.

You should also note that the latest versions of commercial RDBMS programs,
such as DB2, Oracle, and SQL Server have some form of self-tuning
functionality. This means that the RDBMS observes what is running on itself, and
automatically makes internal adjustments which, for the most part, keep the
databases running as optimally as possible given the tasks at hand and the given
hardware.

4.5.1 DB2

This section provides some information about how to tune a DB2 database in the
context of parameters.

� DB2_PARALLEL_IO: Specifies whether DB2 can use parallel I/O when
reading or writing data to and from table space containers (even in situations
where the table space contains only one container).

The default value is NULL.

If you use multiple HDs (data-striping, multiple containers, RAID), you should
set this parameter to DB2_PARALLEL_IO=*.

� DB2_STRIPED_CONTAINERS: Specifies whether the table space container
ID tag will take up a partial or full RAID disk stripe.

The default value is NULL.

If you use multiple HDs (data-striping, multiple containers, RAID), you should
set this parameter to DB2_STRIPED_CONTAINERS=on.

� DB2_BINSORT: Enables a new sort algorithm that reduces the CPU time and
elapsed time of sorts.

The default value is YES.

The default value is recommended.

Attention: Before implementing any of these suggestions in your
environment, proper backout procedures should be followed, such as saving a
backup copy of database configuration, database manager configuration, and
registry parameters.

244 Tivoli Management Services Warehouse and Reporting

� DB2_ANTIJOIN: Specifies whether the optimizer should search for
opportunities to transform “NOT EXISTS” subqueries into anti-joins, which
can be processed more efficiently by DB2.

The default value for an ESE environment is NO.

The default value for a non-ESE environment is YES.

You should set this parameter to YES.

� DB2_HASH_JOIN: Specifies whether a hash join can be used when
compiling a data access plan.

The default value is NO.

You should enable this feature; set the parameter to YES.

� DB2_PRED_FACTORIZE: Specifies whether the optimizer searches for
opportunities to extract additional predicates from disjuncts.

The default value is NO.

You should enable this feature; set the parameter to YES.

� DB2_CORRELATED_PREDICATES: Specifies if the optimizer should use the
KEYCARD information of unique index statistics to detect cases of
correlation, and dynamically adjust the combined selectivities of the
correlated predicates, thus obtaining a more accurate estimate of the join size
and cost.

The default value is YES.

You should keep the default value.

� DB2_RR_TO_RS: Next key lock is used to make sure that no phantom insert
or delete happens while you are scanning data; when you turn on
DB2_RR_TO_RS, you will not be able to guarantee the isolation level RR.

The default value is NO.

You should keep the default value, otherwise your application may have
strange behaviors such as when DB2_RR_TO_RS is on, scans will skip over
rows that have been deleted but not committed, even though the row may
have qualified for the scan.

� DB2_DIRECT_IO and DB2NTNOCACHE: Specifies whether file system
caching is performed on AIX and Windows respectively.

The default value is OFF for both operating systems.

You should enable this feature, setting the parameter to ON so that the
system eliminates caching and allows more memory to be available to the
database so that the buffer pool or sortheap can be increased.

 Chapter 4. IBM Tivoli Data Warehouse tuning 245

� LOGFILSIZ: This parameter defines the size of each primary and secondary
log file. The size of these log files limits the number of log records that can be
written to them before they become full and a new log file is required.

The default value is 1000.

The default value is quite a small size, therefore you should start with a value
of 8192, which means 8192 x 4 k pages of data.

The value of the logfilsiz should be increased if the database has a large
number of update, delete, or insert transactions running against it, which will
cause the log file to become full very quickly. This will generate a lot of error
messages indicating log full. A log file that is too small can affect system
performance, because of the overhead of archiving old log files, allocating
new log files, and waiting for a usable log file.

� LOGPRIMARY: This parameter allows you to specify the number of primary
log files to be preallocated.

The default value is 3.

The default value is not recommended; you should change it to a higher
number starting with 10.

� LOGSECOND: This parameter specifies the number of secondary log files
that are created and used for recovery log files, when the primary log files
become full. The secondary log files (of same size as specified in logfilsiz) are
allocated one at a time as needed, up to a maximum number as controlled by
this parameter.

The default value is 2.

You should change the default value to a number close to 80% of the number
in the LOGPRIMARY parameter in small environments that do not have a lot
of transactions. Alternatively, change the default value to at least three times

Tip: You must balance the size of the log files with the number of primary
log files; a small number of primary logs associated with a log file size too
big will demand a lot of I/O when archiving that log.

Attention: Making this parameter too large can slow things down. The
LOGBUFSZ memory comes out of memory for DBHEAP.

Tip: Use secondary log files for databases that have periodic need for
large amounts of log space.

246 Tivoli Management Services Warehouse and Reporting

more than the LOGPRIMARY parameter to environments with a lot of
transactions.

� DBHEAP: Contains control block information for tables, indexes, table spaces,
buffer pools, and space for the log buffer. The value corresponds to the
number of pages (4 KB).

The default value is:

– UNIX: 1200
– Windows Database server with local and remote clients: 600
– Windows 64-bit Database server with local clients: 600
– Windows 32-bit Database server with local clients: 300

For large-scale environments, start with a value of 8000 or at least twice the
size of the LOGBUFSZ parameter.

� DFT_DEGREE: This parameter specifies the default value for the CURRENT
DEGREE special register and the DEGREE bind option.

The default value is 1.

A value of 1 means no intrapartition parallelism. A value of -1 means the
optimizer determines the degree of intrapartition parallelism based on the
number of processors and the type of query. For a multi-processor machine,
set this to -1 (ANY), and allow intrapartition parallelism for this database.

� INTRA_PARALLEL: This parameter specifies whether the database manager
can use intrapartition parallelism.

The default value is NO.

You should change it to YES.

� LOCKLIST: Indicates the amount of storage that is allocated to the locklist.

The default value is Automatic on DB2 V8 and 100 on earlier versions.

Start with a value between 800 and 1500, if you are running an older version
of DB2, or leave as Automatic, if you are using the v8.

� LOGBUFSZ: Specifies the amount of database heap (defined by the dbheap
parameter) to use as a buffer for log records before writing these records to
disk. These indicate the number of pages (4 KB per page).

The default value is 8.

The default value is too small, therefore you should change it. Start with a
value of 512 for small environments and 4000 for large-scale environments.

Restriction: The intra_parallel parameter does not work without changing
the dtf_degree parameter.

 Chapter 4. IBM Tivoli Data Warehouse tuning 247

� NUM_IOCLEANERS: Specifies the number of asynchronous page cleaners
for a database.

The default value is Automatic.

You should not change it.

� NUM_IOSERVERS: Specifies the number of I/O servers for the database.

The default value is Automatic.

You should not change it.

� SORTHEAP: Defines the maximum number of private memory pages to be
used for private sorts, or the maximum number of shared memory pages to
be used for shared sorts.

The default value is Automatic on DB2 V8.

This may not be desirable in an OLTP environment; if this is your case,
change it. Start with a value of 1024.

4.5.2 Oracle

This section provides some information about how to tune an Oracle database in
the context of parameters.

� SGA_MAX_SIZE: Specifies the maximum size of the SGA for the lifetime of
the instance. A good starting value is 800 MB.

The shared_pool_size parameter is very hard to determine before statistics
are gathered about the actual use of the shared pool. The good news is that
in Oracle 9i, it is dynamic, and the upper limit of shared pool size is controlled
by the sga_max_size parameter.

For systems with more than 1 GB: shared_pool_size = 128 MB and
sga_max_size = 30% of real memory.

Starting with Oracle 9i, SGA managing is dynamic. It means that the DBA just
has to set the maximum amount of memory available to Oracle
(sga_max_size) and a initial value (shared_pool_size), and it will
automatically grow or shrink as necessary. Also, we advise you to use the
lock_sga parameter to lock the SGA in real memory when you have large
amounts of it.

� SGA_LOCK: Locks the entire SGA into physical memory, ensuring no SGA
memory is paged to the disk.

Set to true.

� DB_CACHE_SIZE: Specifies the size of the DEFAULT buffer pool for buffers
with the primary block size.

248 Tivoli Management Services Warehouse and Reporting

Start with a value of 500 MB. If you have no idea about how large to set this
parameter (which is typical on a new system until you start running tests),
then set it so that the SGA is roughly 40% to 50% of memory.

� OPEN_CURSORS: Specifies the maximum number of open cursors (handles
to private SQL areas) a session can have at once. You can use this parameter
to prevent a session from opening an excessive number of cursors.

Default value is 50.

The default value is usually too small for most of DSS and some OLTP
environments, therefore you should set it to 500.

� SHARED_POOL_SIZE: Specifies the size of the shared pool, in bytes. The
shared pool contains shared cursors, stored procedures, control structures,
and other structures.

Start with a value of 148 MB.

� CURSOR_SHARING: Determines what kind of SQL statements can share
the same cursors.

The default value is EXACT.

You can increase performance while you are running select statements, if you
set CURSOR_SHARING to SIMILAR.

� PGA_AGGREGATE_TARGET: Specifies the target aggregate PGA memory
available to all server processes attached to the instance. The recommended
starting value is 1 GB. The WORKAREA_SIZE_POLICY will be set to AUTO,
if the PGA_AGGREGATE_TARGET parameter is set to any value.

� LOG_BUFFER: Specifies the amount of memory (in bytes) that Oracle uses
when buffering redo entries to a redo log file. This buffer speeds up the
database performance by allowing transactions to record the updates to the
database but not send nearly empty log records to the redo log disk. If there
are many transactions added to the log buffer faster than they can be written
to disk, then the buffer can get filled up. This is very bad for performance.

The recommended starting value is 1 MB; you can also set the size of this
parameter to be equal to your redo log files’s size.

4.5.3 SQL Server

This section provides some information about how to tune an SQL Server
database in the context of parameters.

� Affinity mask: Limits SQL Server execution to only a certain set of processors
defined by the bit mask. It is useful for reserving processors for other
applications running on the database server.

The default value is 0; execute on all processors.

 Chapter 4. IBM Tivoli Data Warehouse tuning 249

There is no need to alter this setting, if your server is a dedicated database
server with only one instance of SQL Server running. However, if you have
multiple SQL Server instances, you might want to change the parameter to
assign each SQL Server instance to particular processes on the server.

Table 4-3 shows the affinity mask values for an 8-CPU system.

Table 4-3 Affinity mask values for an 8-CPU system

� Affinity I/O mask: Limits SQL Server I/O threads execution to only a certain
set of processors defined by the bit mask.

The default value is 0; execute on all processors.

The affinity I/O mask option is defined according to the same conditions as
the affinity mask option. It is best to use the default setting of 0.

� Lightweight pooling: Controls fiber mode scheduling. It primarily helps large
multiprocessor servers that are experiencing a high volume of context
switching and high processor utilization.

The default value is OFF.

In general, the lightweight pooling option is not recommended, because it
results in only minor performance improvements. This option is typically used
for benchmark workloads that are extremely uniform.

� Priority boost: This options specifies whether SQL Server should have a
higher scheduling priority than other processes on the same machine.

Decimal value Binary bit mask Allow SQL Server threads on processors

1 00000001 0

3 00000011 0 and 1

7 00000111 0, 1 and 2

15 00001111 0, 1, 2 and 3

31 00011111 0, 1, 2, 3, and 4

63 00111111 0, 1, 2, 3, 4, and 5

127 01111111 0, 1, 2, 3, 4, 5, and 6

255 11111111 0, 1, 2, 3, 4, 5, 6, and 7

Restriction: This parameter is not supported for Microsoft Windows 2000
and Microsoft Windows XP, as today only Windows Server® 2003
provides full support for lightweight pooling.

250 Tivoli Management Services Warehouse and Reporting

The default value is 0.

There is no need to alter this setting if your server is a dedicated database
server, because you might drain CPU from other processes such as
networking and even I/O. This can cause failure situations and transaction
rollbacks, therefore you might be gaining performance on one side, but losing
on the other.

� max degree of parallelism: Limits the number of processors considered for
parallel plan execution to a specified value.

The default value is 0; execute on all processors, no limit. This default setting
may help some complex SQL statements, but it can take away CPU cycles
from other users during high online usage periods.

Set this parameter to 1 during peak OLTP periods. Increase the value of this
parameter during periods of low OLTP and high batch processing, reporting,
and query activity.

Performance tests on some of the batch processes showed that parallelism
can result in very good performance. If you do not want to toggle this value
based on the type of load, you can set the value to 1 to disable this setting.
However, you may want to explore some middle ground by setting this option
to a higher value, for example, 2, which may help some complex batch jobs
and also online performance. The value can be changed to a even higher
number up to 64. However, do not think that if you increase this value to the
maximum, it will exponentially increase the overall performance of your SQL
statement. This will not be true for 98% of the SQL statements, it may do the
opposite, that is, a simple query may take longer than expected.

Attention: Raising the priority too high may drain resources from essential
operating system and network functions, resulting in problems in shutting
down SQL Server or using other operating system tasks on the server.

Note: Index creation and re-creation can take advantage of parallelism,
therefore it is advisable to enable parallelism through this setting when
planning to build or rebuild indexes.

Note: If the computer has only one processor, the max degree of
parallelism value is ignored.

 Chapter 4. IBM Tivoli Data Warehouse tuning 251

� Cost threshold for parallelism: Specifies the cost threshold in seconds that
needs to be met before a query is eligible to be executed with a parallel query
execution plan.

The default value is 5.

Most of the SQL statements of Tivoli are simple in nature and do not require
parallel query execution plans. Consider increasing the value to 60 so that
only true complex queries are evaluated for parallel query execution plans.
Therefore, if you set this value to 60, this means that the Query Optimizer will
not consider parallelism for any query that it thinks will take less than
60 seconds to run.

� Awe enabled: Enable this parameter to take advantage of memory above
4 GB. This is applicable only for 32-bit operating systems.

In Microsoft SQL Server 2005, you can use the Address Windowing
Extensions (AWE) API to provide access to physical memory in excess of the
limits set on configured virtual memory.

The default value is 0 (Disabled).

To enable AWE, set awe enabled to 1.

� Max server memory: Specifies the maximum and minimum memory
respectively in megabytes allocated to an SQL Server instance.

The default values are 2147483647 and 0, respectively.

Important: If the affinity mask option is not set to the default, it may restrict
the number of processors available to SQL Server on symmetric
multiprocessing (SMP) systems.

Important: SQL Server ignores the cost threshold for parallelism value
under the following conditions:

� Your computer has only one processor

� Only a single CPU is available to SQL Server because of the affinity
mask configuration option

� The max degree of parallelism option is set to 1

Important: Using awe enabled and max server memory can affect the
performance of other applications or SQL Server running in a
multi-instance or cluster environment.

252 Tivoli Management Services Warehouse and Reporting

Max server memory / min server memory: SQL Server can adapt its memory
consumption to the workload. SQL Server allocates memory dynamically
within the range of the real memory. Use this setting for a dedicated database
server that does not leverage AWE.

4.6 Physical design considerations

Physical design considerations have a lot of impact on the performance of
RDBMS. First we start with general hardware and operating system
considerations that are applicable to all RDBMS systems. Then we cover
considerations for each supported RDBMS separately.

4.6.1 Hardware and operating system usage

This section discusses overall considerations for the hardware and operating
system usage factors, but it does not discuss detailed calculations for capacity
planning purposes.

Memory
Understanding how RDBMS organizes memory helps you to tune memory use
for good performance. Many configuration parameters affect memory usage.
Some might affect memory on the server, some on the client, and some on both.
Furthermore, memory is allocated and de-allocated at different times and from
different areas of the system. While the database server is running, you can
increase or decrease the size of memory areas inside the database shared
memory. You must understand how memory is divided among the different heaps
before tuning to balance overall memory usage on the entire system.

Central processing unit
The CPU utilization goal must be approximately 70% to 80% of the total CPU
time. Lower utilization means that the CPU can cope better with peak workloads.
Workloads between 85% to 90% result in queuing delays for CPU resources,
which affects response times. CPU utilization above 90% usually results in
unacceptable response times. While running batch jobs, backups, or loading
large amounts of data, the CPU might be driven to high percentages, such as to
80 to 100%, to maximize throughput.

 Chapter 4. IBM Tivoli Data Warehouse tuning 253

Most RDBMS nowadays support the following processor configurations:

� Uni-Processor: This is a single system that contains only one single CPU.

� Symmetric multiprocessor (SMP): This is a single system that can contain
multiple CPUs; scalability is limited to the CPU sockets provided on the
motherboard.

� Massively parallel processors (MPP): This is a system with multiple nodes
connected over a high speed link; each node has their own CPU. Scalability is
achieved by adding new nodes.

Things to consider regarding CPU:

� Inefficient data access methods cause high CPU utilization, and are major
problems for database system.

� Paging and swapping requires CPU time. Consider this factor when planning
your memory requirements.

Input/output
The following points are rules of thumb that you use to calculate total disk space
required by an application. If you have more detailed information, use that
instead of the following points.

� Calculate the raw data size:

– Add the column lengths of your database tables
– Multiply by the number of rows expected

� When you have the raw data size, use the following scaling up ratios to factor
in space for indexing, working space, and so on.

– OLTP ratio: 1:3
– Data Description Specification (DSS) ratio: 1:4
– Data warehouse ratio: 1:5

Consider the following tips to improve disk efficiency:

� Minimize I/O: In the order of magnitude, access to main memory is faster than
it is to disk. Provide as much memory as possible to the database buffer pools
and various memory heaps to avoid I/O.

� When I/O is required, reading simultaneously from several disks is the fastest
way. Provide for parallel I/O operations by:

– Using several smaller disk rather than one big disk
– Place the disk drives on separate controllers

254 Tivoli Management Services Warehouse and Reporting

Choosing disk drives
There are several trends in current disk technology:

� Disk drives get bigger every year, roughly doubling in capacity every
18 months.

� The cost per GB is lower each year.

� The cost difference of the two smallest drives diminishes until there is little
point in continuing with the smaller drive.

� The disk drives improve a little each year in seek time.

� The disk drives get smaller in physical size.

Although the disk drives continue to increase capacity with a smaller physical
size, the speed improvements, seek, and so on, are small in comparison.

A database that had to take 36 * 1 GB drives a number of years ago can now be
placed on one disk. This highlights the database I/O problems. For example, if
each 1 GB disk drive can perform 80 I/O operations a second, this means the
system can do a combined 36 * 80 = 2880 I/O operations per second. But a
single 36 GB drive with a seek time of 7 minutes can perform only 140 I/O
operations per second. Although increased disk drive capacity is good news, the
lower numbers of disks cannot deliver the same I/O throughput.

Recommendations
Consider the following recommendations:

� When determining your I/O requirements, consider OLTP systems:

– Reading data involves reading indexes
– Inserts and updates require data, index, and logs to be written

� Provide for parallel I/O operations:

– Separate data and indexes in separate table spaces, filegroups, or both.

– Use the smallest disk drives possible purely on the basis of increasing the
number of disks for I/O throughput. If you buy larger drives, use only half
the space (the middle area, which is the fastest) for the database, and the
other half for:

• Backups
• Archiving data
• Off hour test databases
• Extra space used for upgrades

 Chapter 4. IBM Tivoli Data Warehouse tuning 255

Network
Usually, the network is not a serious bottleneck, but it can influence the overall
performance of your application, and it typically manifests itself when there is a
delay in the following situations:

� The time between when a client machine sends a request to the server and
the server receives this request

� The time between when the server machine sends data back to the client
machine and the client machine receives the data

When a system is implemented, monitor the network to ensure that more than
50% of its bandwidth is not being consumed. You can monitor on UNIX with
netpmon (for example, netpmon -O all -o netpmon.out), and on Windows with
Perfmon.exe.

Recommendations
You can use the following techniques to improve overall performance and avoid
high network consumption:

� Consider reusing database connections, which can be accomplished using
connection pooling features present in all the major RDBMS available in the
market and in some application servers such as WebSphere.

Why is connection pooling so beneficial? Creating a connection is quite
expensive, because it requires your application to connect to the database
server, authenticate, and return a valid connection. Re-using a connection
from a connection pool eliminates this overhead.

With Web applications, proper pooling is absolutely critical to performance,
because if your application server or Web server is not properly configured, it
might close all of the database connections of a page after the page is
processed. With some Web sites or applications asking for hundreds,
thousands, or millions of database requests, consider what can happen to
your database server. Can it achieve so many demanding tasks, or is it likely
to die as though it is being attacked by a Denial of Service (DoS) attack.

Connection pooling is implemented using tools such as:

– JDBC through, for example, the WebSphere connection pooling feature
– IBM DB2 Connect™

� Use stored procedures to minimize the number of accesses to the database.
Stored procedures are programs that reside on the RDBMS server and can
be run as part of a transaction by the client applications. This way, several
pre-programmed SQL statements can be run by using only one command
from the client machine.

256 Tivoli Management Services Warehouse and Reporting

Using stored procedures typically makes it more difficult to run your
application on different database platforms, such as DB2, Oracle, or SQL
Server, because of the syntactical differences of their stored procedure
implementation. Therefore, if you want to run your application on multiple
database platforms, be aware of this consideration.

4.6.2 DB2

This section offers you information about how to tune a DB2 database in the
context of physical design.

Buffer pools
A buffer pool is an area of memory into which database pages are read,
modified, and held during processing, either as new data is added to a database
or as data is retrieved from disk in response to a query. On any system,
accessing memory is faster than disk I/O. DB2 uses database buffer pools to
attempt to minimize disk I/O.

There is no definitive answer to the question of how much memory you must
dedicate to the buffer pool. Generally, more is better. A good rule of thumb is to
start with approximately 75% of your system's main memory devoted to buffer
pools, but this rule is applicable only if the machine is a dedicated database
server. Because it is a memory resource, its use has to be considered along with
all other applications and processes running on a server. If your table spaces
have multiple page sizes, then you must create only one buffer pool for each
page size.

In some cases, defining multiple buffer pools of the same size can improve
performance. However, if it is badly configured, it can have a huge negative
impact on performance. It is often better to use a single large buffer pool than
several small buffer pools. Using several small buffer pools can cause frequently
accessed pages to be swapped in and out of memory more often. This, in turn,
can lead to I/O contention for storage objects, such as system catalog tables or
repeatedly accessed user tables and indexes. Consider the following points
when you decide to create multiple buffer pools:

� You create tables that reside in table spaces using a page size other than the
4 KB default. This is required (as mentioned previously).

� You have tables that are accessed frequently and quickly by many short
update transaction applications. Dedicated buffer pools for these tables might
improve response times.

� You have tables larger than main memory, which are always fully scanned.
These can have their own dedicated buffer pool.

 Chapter 4. IBM Tivoli Data Warehouse tuning 257

Logs
One of the main purposes of all database systems is to maintain the integrity of
your data. All databases maintain log files that keep records of database
changes. DB2 logging consists of a set of primary and secondary log files that
contain log records that record all changes to a database. The database log is
used to roll back changes for units of work that are not committed and to recover
a database to a consistent state. DB2 provides two logging strategy choices:

� Circular logging

This is the default log mode. With circular logging, the log records fill the log
files, and then overwrite the initial log records in the initial log file. The
overwritten log records are not recoverable. This type of logging is typically
not suited for a production application.

� Log retain logging

Each log file is archived when filled with log records. New log files are made
available for log records. Retaining log files enables roll-forward recovery.
Roll-forward recovery reapplies changes to the database based on completed
units of work (transactions) that are recorded in the log. You can specify that
roll-forward recovery is to the end of the logs or to a particular point in time
before the end of the logs. Archived log files are never directly deleted by
DB2. Therefore, it is the responsibility of the application to maintain them,
such as archive, purge, and so on.

Log performance
Ignoring the performance of your database in relation to its logging can be a
costly mistake, the main cost being time. Placement of the log files has to be
optimized, not only for write performance, but also for read performance,
because the database manager has to read the log files during database
recovery.

Recommendations
Consider the following recommendations:

� Use the fastest disks available for your log files.

Use a separate array, channel, or both, if possible.

� Use Log Retain logging.

� Mirror your log files.

258 Tivoli Management Services Warehouse and Reporting

� Increase the size of the database configuration Log Buffer parameter
(logbufsz):

– This parameter specifies the amount of the database heap to use as a
buffer for log records before writing these records to disk. The log records
are written to disk when one of the following occurs:

• A transaction commits, or a group of transactions commit, as defined
by the mincommit configuration parameter

• The log buffer is full

• As a result of some other internal database manager event

– Buffering the log records results in more efficient logging file I/O, because
the log records are written to disk less frequently, and more log records
are written at each time.

� Tune the Log File Size (logfilsiz) database configuration parameter so that you
do not create excessive log files.

Materialized query table
A materialized query table (MQT) is a table whose definition is based upon the
result of a query. You can think of an MQT as a kind of materialized view. Both
views and MQTs are defined based on a query, but instead of just pointing to the
data, MQTs store the query results in the form of data, such as a table. An MQT
can query tables, views, and other MQTs. Collectively, these are called master
tables (a replication term) or detail tables (a data warehouse term).

Materialized query tables can significantly improve the performance of queries,
especially complex queries. Because complex queries’ results are based on data
that does not change frequently, such as data used to make financial reports of
last quarter or last month, they can be stored in these MQTs and be refreshed
once a month, or whenever required. This way a user can query potentially
terabytes of detail data in just a few seconds. This great performance is
accomplished by the use of precomputed summarizations and joins of data.

An MQT can be defined as maintained by:

� System

When an MQT is maintained by the system, this means that you will not be
able to do any insert, update, or deletes directly to the MQT. There are two
types of System MQTs, and both types must be defined during the creation of
the MQT. They are:

– REFRESH IMMEDIATE: When you specify REFRESH IMMEDIATE, this
tells the RDBMS that the MQT must be created and loaded with data
based on the result of query defined in the creation of it. And every time

 Chapter 4. IBM Tivoli Data Warehouse tuning 259

that the underlying tables change, these changes are replicated in the
MQT.

– REFRESH DEFERRED: When you specify REFRESH DEFERRED, this
tells the RDBMS that the MQT must be created empty, with no data at all,
and that you will refresh the content of the MQT using the REFRESH
TABLE statement. Remember that you cannot run any DML statement
against a System MQT. However, REFRESH IMMEDIATE
system-maintained MQTs are updated with changes made to the
underlying tables as a result of insert, update, or delete operations. See
Example 4-9.

Example 4-9 Create table example

create table emp as
(select e.empno, e.firstnme, e.lastname, d.mgrno

from employee e
 inner join department d

 on e.workdept = d.deptno)
 data initially deferred refresh immediate

� User

A User MQT is maintained by the user itself, which means that the RDBMS
does not perform any data loading at all in this MQT, and the users must by
themselves do everything. In this type of MQT, you can run any DML
statement against it, such as inserts, updates, and deletes. When you create
a User MQT, you can only specify it as REFRESHED DEFERRED, therefore,
the REFRESH IMMEDIATE command does not work in it. See Example 4-10.

Example 4-10 Create table example

create table emp as
(select e.empno, e.firstnme, e.lastname, d.mgrno

from employee e
 inner join department d

 on e.workdept = d.deptno)
 data initially deferred refresh deferred maintained by user

Database maintenance
Regular maintenance is a critical factor in the performance of a database
environment. This involves running the Reorg, Runstats, and Rebind facilities, in
that order, on the database tables. A regularly scheduled maintenance plan is
essential to maintain peak performance of your system.

260 Tivoli Management Services Warehouse and Reporting

REORG
After many changes to table data, which are caused by INSERT, DELETE, and
UPDATE of variable length columns activity, logically sequential data might be on
non-sequential physical data pages so that the database manager must perform
additional read operations to access data. You can reorganize DB2 tables to
eliminate fragmentation and reclaim space using the REORG command.

� Significant reductions in elapsed times due to improved I/O can result from
regularly scheduled REORGs.

� DB2 provides two types of REORG operation.

– Classic REORG

• Provides the fastest method of REORG

• Indexes are rebuilt during the reorganization

• Ensures perfectly ordered data

• Access is limited to read-only during the UNLOAD phase; no access
during other phases

• Is not restartable

– In-Place REORG

• Slower than the Classic REORG; takes longer to complete
• Does not ensure perfectly ordered data or indexes
• Requires more log space
• Can be paused and restarted
• Can allow applications to access the database during reorganization

Recommendations
Consider the following recommendations:

� Implement a regularly scheduled maintenance plan.

� If you have an established database maintenance window, use the Classic
REORG.

� If you operate a 24x7 operation, use the In-Place REORG.

RUNSTATS
As mentioned previously, the DB2 optimizer uses information and statistics in the
DB2 catalog to determine the best access to the database based on the query
provided. Statistical information is collected for specific tables and indexes in the
local database when you issue the RUNSTATS utility. When significant numbers
of table rows are added or removed, or if data in columns for which you collect

 Chapter 4. IBM Tivoli Data Warehouse tuning 261

statistics is updated, run RUNSTATS again to update the statistics. Use the
RUNSTATS utility to collect statistics in the following situations:

� When data is loaded into a table and the appropriate indexes are created

� When you create a new index on a table; you have to issue RUNSTATS for
only the new index, if the table has not been modified since you last ran
RUNSTATS on it.

� When a table is reorganized with the REORG utility

� When the table and its indexes are extensively updated, by data
modifications, deletions, and insertions (Extensive in this case can mean that
10% to 20% of the table and index data is affected.)

� Before binding or rebinding application programs whose performance is
critical

� When you want to compare current and previous statistics; if you update
statistics at regular intervals you can discover performance problems early.

� When the prefetch quantity is changed

� When you have used the REDISTRIBUTE DATABASE PARTITION GROUP
utility

There are various formats of the RUNSTATS command, mainly determining the
depth and breadth or statistics collected. The more you collect, the longer the
command takes to run. Some of the options are as follows:

� Collecting either SAMPLED or DETAILED index statistics

� Collecting statistics on all columns or only columns used in JOIN operations

� Collecting distribution statistics on all, key, or no columns. Distribution
statistics are useful when you have an uneven distribution of data on key
columns

Recommendations
Consider the following recommendations:

� Care must be taken when you run RUNSTATS, because the information
collected impacts the optimizer's selection of access paths.

� Implement as part of a regularly scheduled maintenance plan if some of the
previously mentioned conditions occur.

� To ensure that the index statistics are synchronized with the table, issue
RUNSTATS to collect both table and index statistics at the same time.

262 Tivoli Management Services Warehouse and Reporting

� Consider some of the following factors when deciding what type of statistics to
collect:

– Collect statistics only for the columns used to join tables or in the WHERE,
GROUP BY, and similar clauses of queries. If these columns are indexed,
you can specify the columns with the ONLY ON KEY COLUMNS clause
for the RUNSTATS command.

– Customize the values for num_freqvalues and num_quantiles for specific
tables and specific columns in the tables.

– Collect DETAILED index statistics with the SAMPLE DETAILED clause to
reduce the amount of background calculation performed for the detailed
index statistics. The SAMPLE DETAILED clause reduces the time required
to collect statistics and produces adequate precision in most cases.

– When you create an index for a populated table, add the COLLECT
STATISTICS clause to create statistics as the index is created.

REBIND
After running RUNSTATS on your database tables, you have to rebind your
applications to take advantage of these new statistics. This is done to ensure that
the best access plan is being used for your SQL statements. How that rebind
takes place depends on the type of SQL that you are running. DB2 provides
support for:

� Dynamic SQL

These are SQL statements that are prepared and run at run time. In dynamic
SQL, the SQL statement is contained as a character string in a host variable
and is not precompiled.

� Static SQL

These are SQL statements that are embedded within a program and are
prepared during the program preparation process before the program is run.
After being prepared, a static SQL statement does not change, although
values of host variables specified by the statement can change. These static
statements are stored in a DB2 object called a package.

Both dynamic SQL statements and packages can be stored in one of the caches
of DB2. Based on these types of SQL, a rebind takes place under these
conditions.

� Dynamic SQL

– If the statement is not in the cache, the SQL Optimizer binds the statement
and generates a new access plan.

– If the statement is in the cache, no rebind takes place.

 Chapter 4. IBM Tivoli Data Warehouse tuning 263

To clear the contents of the SQL cache, use the FLUSH PACKAGE
CACHE SQL statement.

� Static SQL

– An explicit REBIND <package> is issued
– Implicitly if the package is marked invalid

For example, this can occur if an index that the package was using has
been dropped.

Monitoring tools
The most convenient way for you is to use IBM Tivoli Monitoring DB2 agent to
monitor your DB2 database, because IBM Tivoli Monitoring is already installed in
your environment. For sample scenarios, refer to Deployment Guide Series: IBM
Tivoli Monitoring Express Version 6.1, SG24 -7217.

In addition, DB2 provides several other tools that you can use for monitoring or
analyzing your database. These monitoring and analyzing tools and their
purposes are:

� Snapshot Monitor: This tool captures performance information at periodic
points of time. It is used to determine the current state of the database.

� Event Monitor: This tool provides a summary of activity at the completion of
events such as statement execution, transaction completion, or when an
application disconnects.

� Explain Facility: This tool provides information about how DB2 accesses the
data to resolve the SQL statements. We can use both the explain tool using
any SQL editor, or the visual explain tool for those who prefer using a
graphical user interface (GUI) application.

� db2batch tool: This tool provides performance information (benchmarking
tool).

4.6.3 Oracle

This section provides some information about how to tune an Oracle database in
the context of physical design.

Buffer pools
A buffer pool or buffer cache is a memory structure inside Oracle System Global
Area (SGA) for each instance. This buffer cache is used for caching data blocks

Important: Perform a REBIND after running RUNSTATS as part of your usual
database maintenance procedures.

264 Tivoli Management Services Warehouse and Reporting

in the memory. Accessing data from the memory is significantly faster than
accessing data from disk. The goal of block buffer tuning is to efficiently cache
frequently used data blocks in the buffer cache (SGA) and provide faster access
to data. Tuning block buffer is a key task in any Oracle tuning initiative and is a
part of the ongoing tuning and monitoring of production databases. Oracle
maintains its own buffer cache inside the SGA for each instance. A properly sized
buffer cache can usually yield a cache hit ratio over 90%, which means that nine
requests out of ten are satisfied without going to disk. If a buffer cache is too
small, the cache hit ratio will be small and more physical disk I/O will result. If a
buffer cache is too big, then parts of the buffer cache will be underutilized and
memory resources will be wasted.

Redo logs
One of the main purposes of all database systems is to maintain the integrity of
your data. All databases maintain log files that keep records of database
changes. Oracle redo log consists of a set of two or more redo log files, and
these files are filled with redo records. The database requires a minimum of two
files to guarantee that one is always available for writing, and the other is being
archived (if the database is in ARCHIVELOG mode).

A redo record consists of a group of change vectors, each of which is a
description of a change made to a single block in the database. The database log
is used to roll back changes for units of work that are not committed, and to
recover a database to a consistent state. LGWR is an Oracle process that takes
care of writing the log from the buffer to the files. It writes to redo log files in a
circular fashion. When the current redo log file fills, LGWR begins writing to the
next available redo log file. When the last available redo log file is filled, LGWR
returns to the first redo log file and writes to it, starting the cycle again. Filled
redo log files are available to LGWR for reuse depending on whether archiving is
enabled.

Oracle provides two logging strategy choices:

� No archive logging

This is the default log mode, and it is also known as NOARCHIVELOG mode.
With circular logging, the log records fill the log files, and then overwrite the
initial log records in the initial log file after all the changes are written to the
data files. The overwritten log records are not recoverable. This type of
logging is typically not suited for a production application.

� Archive logging

Each log file is archived only after all the changes are applied to the data files.
After the archiving of the log file, it is available for use by the LGWR process.
Retaining these log files enables roll-forward recovery. Roll-forward recovery
reapplies changes to the database based on completed units of work

 Chapter 4. IBM Tivoli Data Warehouse tuning 265

(transactions) that are recorded in the log. You can specify that roll-forward
recovery is to the end of the logs, or to a particular point in time before the end
of the logs. Archived log files are never directly deleted by Oracle, therefore it
is the responsibility of the application to maintain them, such as to archive,
purge, and so on.

Log performance
Ignoring the performance of your database in relation to its logging can be a
costly mistake, the main cost being time. Placement of the log files has to be
optimized, not only for write performance, but also for read performance,
because the database manager has to read the log files during database
recovery. Therefore when designing for performance, you must keep in mind four
things:

� Multiplexing redo log files

Multiplexing means that you can have copies of your redo log files in different
disks. It works like a log replication. Each copy is called a member. Oracle
writes to these members simultaneously to ensure that the database is
always recoverable, at the same time maintaining performance. But
remember that you must have at least two log files per database and in that
number you cannot include multiplexes copies.

� Placing redo log members on different disks

If you put each member in a different disk, it can improve the LGWR
performance, because it uses less I/O.

� Setting the size of redo log members

The size of the redo log files can influence performance, because the
behavior of the database writer and archiver processes depends on the redo
log sizes. Generally, larger redo log files provide better performance.
Undersized log files increase checkpoint activity and reduce performance.

It might not always be possible to provide a specific size recommendation for
redo log files, but redo log files in the range of a 100 MB to a few GB are
considered reasonable. Size your online redo log files according to the
amount of redo that your system generates. A rough guide to switch logs is, at
most, once every 20 minutes.

� Choosing the number of redo log files

You must have at least two log files’ members (no copies) per database, but
you can have more. This depends on your approach. You might choose to get
bigger redo logs or get more redo logs in different disks. You must achieve a
balance between them to get the optimal performance.

266 Tivoli Management Services Warehouse and Reporting

Materialized views
A materialized view is basically a table whose definition is based upon the result
of a query. Both views and materialized views are defined based on a query, but
instead of just pointing to the data, materialized views can store the query results
in the form of data, such as a table. A materialized view can query tables, views,
and other materialized views. Collectively, these are called master tables (a
replication term) or detail tables (a data warehouse term).

Materialized views can significantly improve the performance of queries,
especially complex queries. Because complex queries’ results are based on data
that does not change frequently, such as data used to make financial reports of
last quarter or last month, they can be stored in these materialized views and be
refreshed once a month or whenever required. This way, a user can query
potentially terabytes of detail data in just a few seconds. This great performance
is accomplished by the use of precomputed summarizations and joins of data.

In Oracle’s materialized views, you can even define the time frame between
automatic refreshes. Use the refresh option in the create statement, as shown in
Example 4-11.

Example 4-11 Refresh option

create materialized view sample_mv
 build immediate
 refresh on commit
 enable query rewrite
as
SELECT dept.dname, count(*)

FROM emp
INNER JOIN dept

ON emp.deptno = dept.deptno;

In Example 4-11, you can use the following options:

� Build immediate

This option commands the Oracle database to load the materialized view with
data from that moment.

Attention: Oracle recommends that you multiplex your redo log files. The
loss of the log file data can be catastrophic, if recovery is required.

 Chapter 4. IBM Tivoli Data Warehouse tuning 267

� Refresh on commit

Every time the base or master tables are refreshed, the materialized view
reflects those changes. You can also have a materialized view that is
refreshed every seven days, as shown in Example 4-12.

Example 4-12 Refresh option

CREATE MATERIALIZED VIEW sample_mv
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
AS
SELECT dept.dname, count(*)

FROM emp
INNER JOIN dept

ON emp.deptno = dept.deptno;

Monitoring tools
You can use IBM Tivoli Monitoring for Oracle agent to monitor database through
IBM Tivoli Monitoring.

Oracle also provides some monitoring tools for Oracle database:

� TKProf: TKPROF stands for transient kernel profiler and is used to convert
Oracle trace files into a more readable form.

� Oracle Enterprise Manager’s Tuning Pack: This pack contains tools that can
be used to identify problems, give recommendations about indexes, and other
useful tools, such as tuning the Oracle database.

4.6.4 SQL Server

This section provides some information about how to tune an SQL Server
database in the context of physical design.

Buffer cache
The buffer cache is divided into 8 KB pages. The buffer manager manages the
functions for reading data or index pages from the database disk files into the
buffer cache, and writing modified pages back to disk. A page remains in the
buffer cache until it has either not been referenced for some time or the buffer
manager requires the buffer area to read in more data. Data is written back to
disk only if it is modified. Data in the buffer cache can be modified multiple times
before being written back to disk.

268 Tivoli Management Services Warehouse and Reporting

SQL Server buffer
The Buffer Cache Hit Ratio counter indicates how often SQL Server goes to the
buffer, and not the hard disk, to get data. In OLTP applications, this ratio must
exceed 90%, and ideally be more than 99%. If your buffer cache hit ratio is lower
than 90%, purchase more RAM. If the ratio is between 90% and 99%, then you
must consider purchasing more RAM, because the closer you get to 99%, the
faster your SQL Server performs. In some cases, if your database is very large,
you might not be able to get close to 99%, even if you put the maximum amount
of RAM in your server. You can try and add as much as you can.

In OLAP applications, the ratio can be much less because of the nature of how
OLAP works. In any case, more RAM increases the performance of SQL Server.

Logs
The log files in SQL Server are known as transaction logs. Each SQL Server
database has at least one log file, and this log is a wrap-around file. Each log file
is subdivided in N virtual log files. These virtual log files do not have a specific
size or amount of virtual files predefined. The SQL Server decides this when it
extends or creates new log files. SQL Server writes all the transaction records in
a wrap-around style.

For example, consider a database with two physical log files, each one with three
virtual log files. When the database is created, the virtual and physical log file
begins in the same place. New log records are added at the end of the logical log
and expanded toward the end of the physical log. Log truncation frees any virtual
logs that has a number of records smaller than the minimum recovery log
sequence number (MinLSN). The MinLSN is the log sequence number of the
oldest log record that is required for a successful database-wide rollback. When
the end of the logical log reaches the end of the physical log file, the new log
records wrap around to the start of the physical log file, and this keeps going
while the logical log never reaches the beginning of the logical log. However, if
that happens, the end of the logical log reaches the start of the logical log and
one of following results occurs:

� If the FILEGROWTH setting is enabled for the log and space is available on
the disk, the file is extended by the amount specified in growth_increment and
the new log records are added to the extension.

� If the FILEGROWTH setting is not enabled or the disk that is holding the log
file has less free space than the amount specified in growth_increment, an
error is generated.

� If the log contains multiple physical log files, the logical log will move through
all the physical log files before it wraps back to the start of the first physical log
file.

 Chapter 4. IBM Tivoli Data Warehouse tuning 269

Recommendations
Consider the following recommendations:

� Each database can have one or more transaction logs. It is a good idea to
have more than one transaction log per database and have them located in
more than one disk.

� Restarting a server instance resizes the transaction log of the tempdb
database to its original pre-autogrow size. This can reduce the performance
of the tempdb transaction log. You can avoid this overhead by increasing the
size of the tempdb transaction log after starting or restarting the server
instance.

� As you can see, SQL Server does not have any feature for retaining or
archiving the transaction logs as DB2 and Oracle have. Therefore, it is
important that you design and implement a periodic transaction log backup. If
you do not have a periodic backup, you will not be able to restore a database
within a specific time, it will only be restored to the latest database backup you
have.

However, you must make sure that the truncate log on the checkpoint option
on the database is set to false. If it is set to true, as soon as 70% of the log file
is used, or any error occurs, the SQL Server will try to take a checkpoint, and
truncate all non-active log records. You can set the database’s truncate log on
checkpoint option to false using the command shown in Example 4-13.

Example 4-13 Setting the database’s truncate log on checkpoint option to false

exec sp_dboption 'pubs', 'trunc. log on chkpt.', 'false'

This sets the option to false on the database pubs, but you can choose any of
your databases.

The unused virtual log spaces are freed after each backup log that you make.
This way your log file does not grow until it reaches the end of the disk.

� We recommend that you do not define the transaction log files’ initial size as
too small or define the growth_increment value as too small. This way you
can minimize the number of times that the log file grows, thereby decreasing
the overhead necessary to do that.

Indexed views
An indexed view is a view that has a unique clustered index created on it. Usually
views do not exist on disk as rows. This changes for indexed views, which exist in
the database as rows that realize the view. There can also be nonclustered
indexes on the view, if it has the unique clustered index. Both views and indexed
views are defined based on a query, but instead of just pointing to the data,
indexed views store the query results in the form of data, such as a table. An
indexed view can query tables, views, and other indexed views. Collectively,

270 Tivoli Management Services Warehouse and Reporting

these are called master tables (a replication term) or detail tables (a data
warehouse term). When the clustered index is created on the view, SQL Server
immediately allocates storage space to store the results of the view. You can then
treat the view like any other table by adding additional nonclustered indexes.

Indexed views can significantly improve the performance of queries, especially
complex queries. Because complex queries’ results are based on data that does
not change frequently, such as data used to make financial reports of last quarter
or last month, they can be stored in these materialized views. This way, a user
can query potentially terabytes of detail data in just a few seconds. This great
performance is accomplished by the use of precomputed summarizations and
joins of data.

An indexed view automatically reflects modifications made to the data in the base
tables after the index is created, which is the same way that an index created on
a base table does. Because modifications are made to the data in the base
tables, the data modifications are also reflected in the data stored in the indexed
view. See Example 4-14.

Example 4-14 Create view

CREATE VIEW Vdiscount1 WITH SCHEMABINDING AS
SELECT SUM(UnitPrice*OrderQty) AS SumPrice,
SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS SumDiscountPrice,
COUNT_BIG(*) AS Count, ProductID
FROM Sales.SalesOrderDetail
GROUP BY ProductID
GO
CREATE UNIQUE CLUSTERED INDEX VDiscountInd ON Vdiscount1 (ProductID)

Database maintenance
A comprehensive description of database maintenance is beyond the scope of
this book. There are other books, articles, and Web sites, which provide further
information about the commands shown in this section. The key to maintaining a
database is to be familiar with how it runs. The commands shown in this section
help you to spot the warning signs that the database is about to have a bad day
and, hopefully, can help you to prevent them.

� DBCC CHECKDB

The first command to run, to help spot the problems in the database, is DBCC
CHECKDB. The DBCC CHECKDB command verifies that index and data
pages are linked properly, indexes are sorted, the pointers in the database
are accurate, the data looks fine, and that there are proper page offsets. If you

 Chapter 4. IBM Tivoli Data Warehouse tuning 271

are unsure of what that means, that is acceptable, as you are only looking for
errors at this point. The syntax looks like Example 4-15.

Example 4-15 DBCC CHECKDB

DBCC CHECKDB ('DatabaseName')

The output goes on for sometime, but must not have any error codes. You can
suppress the output of the information messages by adding WITH
NO_INFOMSGS to the end of the command, as shown in Example 4-16.

Example 4-16 DBCC CHECKDB

DBCC CHECKDB ('DatabaseName') WITH NO_INFOMSGS

� DBCC CHECKTABLE

Use the DBCC CHECKTABLE command to drill in a bit further on any table
that has generated an error.

� DBCC INDEXDEFRAG, DBCC DBREINDEX

The main item of database optimization is the index. Each index on a
database is a set of pointers to where the data is stored in the physical
arrangement of the tables. When these indexes are not kept up-to-date or
become fragmented, then the access to the data is slow. To defragment the
indexes, you can use both DBCC commands, if you have an earlier version of
SQL Server. Alternatively, you can use the new ALTER INDEX command,
because those two DBCC commands were deprecated on the SQL Server
2005 version. The difference between both DBCC commands is that the
INDEXDEFRAG is an online operation and does not hold any locks.

Example 4-17 shows how to rebuild indexes in a table using the DBCC
DBREINDEX command.

Example 4-17 Rebuilding indexes in table using DBCC DBREINDEX command

--Rebuilding a specific index in a table
DBCC DBREINDEX ('FactInternetSales',
AK_FactInternetSales_SalesOrderNumber_SalesOrderLineNumber);

--Rebuilding all indexes in a table
DBCC DBREINDEX ('FactInternetSales', '');

272 Tivoli Management Services Warehouse and Reporting

Example 4-18 shows how to rebuild indexes in a table using the DBCC
INDEXDEFRAG command.

Example 4-18 Rebuilding indexes in table using DBCC INDEXDEFRAG command

--Rebuilding a specific index in a table
DBCC INDEXDEFRAG (AdventureWorksDW, 'FactInternetSales',
AK_FactInternetSales_SalesOrderNumber_SalesOrderLineNumber)

--Rebuilding all indexes in a table
DBCC INDEXDEFRAG (AdventureWorksDW, 'FactInternetSales')

Example 4-19 shows how to rebuild indexes in a table using the ALTER
INDEX command.

Example 4-19 Rebuilding indexes in a table using the ALTER INDEX command

--Rebuilding a specific index in a table
ALTER INDEX AK_FactInternetSales_SalesOrderNumber_SalesOrderLineNumber
ON FactInternetSales
REBUILD;

--Rebuilding all indexes in a table
ALTER INDEX ALL ON FactInternetSales
REBUILD;

� You can monitor log space use by using DBCC SQLPERF (LOGSPACE), as
shown in Example 4-20. This command returns information about the amount
of log space currently used and indicates when the transaction log requires
truncation.

Example 4-20 DBCC SQLPERF

DBCC SQLPERF(LOGSPACE);

Database Name Log Size (MB) Log Space Used (%) Status
---------------- ------------- ------------------ ------
master 1,242188 39,93711 0
tempdb 0,4921875 50,39682 0
model 0,7421875 61,05263 0
msdb 1,992188 31,76471 0
AdventureWorksDW 1,992188 37,15686 0

 Chapter 4. IBM Tivoli Data Warehouse tuning 273

Monitoring tools
You can use IBM Tivoli Monitoring for SQL Server agent to monitor database
through IBM Tivoli Monitoring. For sample scenarios, refer to Deployment Guide
Series: IBM Tivoli Monitoring Express Version 6.1, SG24-7217.

SQL Server also provides several tools that you can use for monitoring or
analyzing your database. The choice of the tool depends on the type of
monitoring or tuning to be done and the particular events to be monitored. The
following points discuss monitoring and analyzing tools and their purposes:

� SQLCMD: The SQLCMD tool is an operating system command-line based
query tool. You can use it to connect to a server, run a command, and receive
the output on the current command window. You can also run a script from a
file, send the results to a file, and even use variables with it. To see all the
options, drop to a command-line in the operating system where the tool is
installed and type SQLCMD /?.

� SQL Server Profiler: This tool tracks engine process events. You can use it to
monitor server and database activity. It can work as kind of SQL Sniffer,
because it can read the information going to and from an SQL Server
Database Engine or Analysis Services server. It functions similarly to the tool
by the same name in SQL Server 2000. However, in this version you can
include Windows Performance Monitor objects and counters so that you can
observe platform information along with the SQL Server activity to correlate
the two. When you use this feature, you can determine what T-SQL statement
is running when the processor or memory load is high. You can also keep
track of information such as the start of a batch or a transaction and
deadlocks, fatal errors, or login activity.

� System Monitor: System Monitor primarily tracks resource usage, such as the
number of buffer manager page requests in use enabling you to monitor
server performance and activity using predefined objects and counters or
user-defined counters to monitor events. System Monitor (Performance
Monitor in Microsoft Windows NT 4.0) collects counts and rates rather than
data about the events (for example, memory usage, number of active
transactions, number of blocked locks, or CPU activity). You can set
thresholds on specific counters to generate alerts that notify operators.
System Monitor works on Microsoft Windows Server and Windows operating
systems. It can monitor (remotely or locally) an instance of SQL Server on
Windows NT 4.0 or later. The key difference between SQL Server Profiler and
System Monitor is that SQL Server Profiler monitors Database Engine events,
but System Monitor monitors resource usage associated with server
processes.

274 Tivoli Management Services Warehouse and Reporting

� SQL Server Management Studio: The Activity Monitor in SQL Server
Management Studio graphically displays information about:

– Processes running on an instance of SQL Server
– Blocked processes
– Locks
– User activity

This is useful for ad hoc views of current activity.

� SQL Trace: Transact-SQL stored procedures that create, filter, and define
tracing:

– sp_trace_create (Transact-SQL)
– sp_trace_generateevent (Transact-SQL)
– sp_trace_setevent (Transact-SQL)
– sp_trace_setfilter (Transact-SQL)
– sp_trace_setstatus (Transact-SQL)

� Error Logs: The Windows application event log provides an overall picture of
events occurring on the Windows Server and Windows operating systems as
a whole, and events in SQL Server, SQL Server Agent, and full-text search. It
contains information about events in SQL Server that is not available
elsewhere. You can use the information in the error log to troubleshoot SQL
Server related problems.

� Database Engine Stored Procedures: The following SQL Server system
stored procedures provide a powerful alternative for many monitoring tasks:

– sp_who: This reports snapshot information about current SQL Server
users and processes, including the currently executing statement and
whether the statement is blocked.

– sp_lock: This reports snapshot information about locks, including the
object ID, index ID, type of lock, and type or resource to which the lock
applies.

– sp_spaceused: This displays an estimate of the current amount of disk
space used by a table (or a whole database).

– sp_monitor: This displays statistics, including CPU usage, I/O usage, and
the amount of time idle since sp_monitor was last run.

� DBCC: Database Console Command (DBCC) statements enable you to
check performance statistics and the logical and physical consistency of a
database.

 Chapter 4. IBM Tivoli Data Warehouse tuning 275

� Functions: Built-in functions display snapshot statistics about SQL Server
activity since the server was started. These statistics are stored in predefined
SQL Server counters. For example:

– @@CPU_BUSY contains the amount of time the CPU has been running
SQL Server code

– @@CONNECTIONS contains the number of SQL Server connections or
attempted connections

– @@PACKET_ERRORS contains the number of network packets
occurring on SQL Server connections

� Trace Flags: Trace flags display information about a specific activity within the
server and are used to diagnose problems or performance issues (for
example, deadlock chains).

� Database Engine Tuning Advisor: Database Engine Tuning Advisor analyzes
the performance effects of Transact-SQL statements run against databases
that you want to tune. It provides recommendations to add, remove, or modify
indexes, indexed views, and partitioning.

You can monitor activity for index performance issues with a tool called the
Index Tuning Wizard. In SQL Server 2005, this capability is enhanced with the
Database Tuning Advisor. Available as a tool of its own or from within SQL
Server Management Studio, this tool can tune not only indexes but also the
physical layout. The process is to start the tool when a set of operations are
run on the server. This process is usually done on a testing server, but one
similar in size and capability to the production server. After the activity
completes, the Database Tuning Advisor makes suggestions on everything
from table arrangements to filegroup and index layouts, based on the settings
that you choose.

Database Engine Tuning Advisor is a tool that analyzes the performance
effects of workloads run against one or more databases. A workload is a set
of Transact-SQL statements that runs against databases that you want to
tune. After analyzing the effects of a workload on your databases, Database
Engine Tuning Advisor provides recommendations to add, remove, or modify
physical design structures in Microsoft SQL Server databases. These
physical performance structures include clustered indexes, nonclustered
indexes, indexed views, and partitioning. When implemented, Database
Engine Tuning Advisor recommendations enable the query processor to
perform workload tasks in the shortest amount of time.

276 Tivoli Management Services Warehouse and Reporting

4.7 SQL tuning

In a majority of the cases, probably the single most important factor for
performance with databases when doing reports or extracting data from them is
how efficiently your SQL statements are written.

4.7.1 Review application SQL for efficiencies

There is no magic formula, method, or technique for tuning SQL queries. We
provide some recommendations, based on our past experiences.

This topic mainly deals with SQL search criteria, which can be present in
SELECT, UPDATE, DELETE, or INSERT (through a subselect) statements.
Reviewing SQL queries serves the following purposes:

� It provides the database designers with the necessary information they
require to determine the proper indexes that must be created on your
database tables. These statements are essential for the designer to be able to
create the optimal indexes to support your database access. All of the
considerations mentioned previously regarding indexes must be considered.

� It allows an independent review of the SQL for the purpose of using efficient
SQL coding techniques.

� It determines if locking strategies are appropriate.

� It assesses the impact of changes in your data model or data content.

� It assess the impact of the application of service to the database manager.

4.7.2 General SQL review process

Keep in mind that this is not a magic SQL review process, and is not by any
means the only and absolute review process. You can use this as a basis for your
own review process, or modify it to meet your needs and expectations. To review
the SQL, you can use the following process or workflow shown in Figure 4-1.

Recommendation: Implement a formal SQL review process for your
applications or use the one suggested in this book, which is referred to in the
following section.

 Chapter 4. IBM Tivoli Data Warehouse tuning 277

Figure 4-1 General SQL review process

3

5

6

7

8

10

4

1311 12

9

 No

 Yes

 Yes

 Yes

 No

 No

1

2

1 - Identify the SQL query.
2 - Gather business information about it.
3 - Does the SQL query only do what was planned to do.
4 - Exclude all data not necessary for the required
5 - Rerun the query
6 - Is it still performing badly?
7 - Close out
8 - Get the access plan for it.
9 - Get the data model.
10 - Analysis of the access plan
11 - Rewrite the query or change the DB design.
12 - Is the performance OK?
13 - Closeout

278 Tivoli Management Services Warehouse and Reporting

1. Identify the SQL query that performs badly.

We have to determine the SQL queries that have to be worked on. If you are
developing your application today, you probably already know what SQL
queries run faster or slower, therefore finding which queries have to be tuned
is not a problem at all. However, if you do not know which query is performing
badly or you cannot access the application’s source code, you can still
determine which query has to be tuned. You just require a tool that traces all
the SQLs running in your database at that moment.

For example, you might require the Activity Monitor tool or the GET
SNAPSHOT command shown in Example 4-21.

Example 4-21 GET SNAPSHOT command

% db2 reset monitor all
% db2 get snapshot for dynamic sql on bank
% db2 get snapshot for dynamic sql on bank > snap1.txt
% grep -i 'Total execution' snap1.txt

2. Gather all the business information about it.

Before performing any analysis on the queries that you found, you must
gather all the information you can about them, such as what are they used for,
what information is necessary, and so on.

3. Exclude all data that is not necessary for the business requirement.

Remove all information that is not required for your business goal, for
example, any column not required from the SELECT clause. This decreases,
for example, I/O, and network usage.

4. Re-run the query.

Re-run the query to determine if it is still performing badly.

5. Get the access plan for it.

At this stage, you know what the database is accessing and why, but you do
not know how the database is accessing it. For that, you require an access
plan, which can be provided by the Visual Explain tool or through the
db2exfmt tool, or you can have access to the information created by the
Explain tool using simple plain SQL queries against the Explain’s tables.

 Chapter 4. IBM Tivoli Data Warehouse tuning 279

We provide two examples of outputs (Figure 4-2 and Example 4-22) that you
can use to check the access plan generated by the RDBMS.

Figure 4-2 Access plan shown through Visual Explain tool

Example 4-22 Access plan extracted from the output generated by db2exfmt tool

Access Plan:

Total Cost: 19,7333
Query Degree:1

 Rows

280 Tivoli Management Services Warehouse and Reporting

 RETURN
 (1)
 Cost
 I/O
 |
 3,08
 TBSCAN
 (2)
 19,7333
 1,53314
 |
 3,08
 SORT
 (3)
 19,7328
 1,53314
 |
 3,08
 FETCH
 (4)
 19,7315
 1,53314
 /----+---\
 3,08 77
 IXSCAN TABLE: DENISV
 (5) EMPLOYEE
 0,0232886
 0
 |
 77
 INDEX: DENISV
 IX_JOB

6. Get the data model of the database or databases involved in the SQL query.

The access plan shows you how the database is accessing the data through
tables’ scans, indexes’ scans, and so on. But the information is worthless if
you do not know what it is about. The reason behind getting the data model of
the database you are accessing is to understand it better, and have a clear
view of what and how it is accessing.

If you do not have a data model, you can do a reverse engineering by using
tools such as IBM Rational Data Architect or AllFusion ERwin Data Modeler
so that you can obtain one. But if your company does not have the licenses
and does not want to buy them, you have to obtain this information by using
the DB2 catalog tables (Data Dictionary).

 Chapter 4. IBM Tivoli Data Warehouse tuning 281

7. Analyze the access plan.

Now that you have the access plan, either in graphic format or text format, you
can study it and try to find the most CPU and I/O consuming operations, such
as tablescan. Use this study as your basis when comparing the access plan,
the SQL statement, and both the non-technical and technical information that
you have gathered about the SQL statement.

When performing your access plan analysis the operators listed in Table 4-4
might be shown in it.

Table 4-4 Operators that might be displayed in the access plan graph

Tip: It is important to have the statistics of your database up-to-date,
otherwise the query optimizer will not work as required, choosing a
non-optimal access plan.

Operator Brief description

DELETE Deletes rows from a table

EISCAN Scans a user-defined index to produce a reduced stream of rows

FETCH Fetches columns from a table using a specific record identifier

FILTER Filters data by applying one or more predicates to it

GRPBY Groups rows by common values of designated columns or functions, and
evaluates set functions

HSJOIN Represents a hash join, where two or more tables are hashed on the join
columns

INSERT Inserts rows into a table

IXAND ANDs together the row identifiers (RIDs) from two or more index scans

IXSCAN Scans an index of a table with optional start/stop conditions, producing an
ordered stream of rows

MSJOIN Represents a merge join, where both outer and inner tables must be in
join-predicate order

NLJOIN Represents a nested loop join that accesses an inner table once for each
row of the outer table

RETURN Represents the return of data from the query to the user

RIDSCN Scans a list of RIDs obtained from one or more indexes

282 Tivoli Management Services Warehouse and Reporting

We describe the operators in Table 4-4 in more detail:

– DELETE

This operator represents a necessary operation. To improve access plan
costs, concentrate on other operators, such as scans and joins, which
define the set of rows to be deleted.

Performance suggestion: If you are deleting all rows from a table, consider
using the DROP TABLE statement or the LOAD REPLACE command in
DB2, or if you are using Oracle or SQL Server, use the TRUNCATE
command instead.

– EISCAN

This operator scans a user-defined index to produce a reduced stream of
rows. The scanning uses the multiple start/stop conditions from the
user-supplied range producer function. This operation is performed to
narrow down the set of qualifying rows before accessing the base table
(based on predicates).

RPD An operator for remote plans; It is very similar to the SHIP operator in
Version 8 (RQUERY operator in previous versions), except that it does
not contain an SQL statement.

SHIP Retrieves data from a remote database source; used in the federated
system

SORT Sorts rows in the order of specified columns, and optionally eliminates
duplicate entries

TBSCAN Retrieves rows by reading all required data directly from the data pages

TEMP Stores data in a temporary table to be read back out (possibly multiple
times)

TQUEUE Transfers table data between database agents

UNION Concatenates streams of rows from multiple tables

UNIQUE Eliminates rows with duplicate values, for specified columns

UPDATE Updates rows in a table

Operator Brief description

 Chapter 4. IBM Tivoli Data Warehouse tuning 283

Performance suggestions:

• Over time, database updates might cause an index to become
fragmented, resulting in more index pages than necessary. This can be
corrected by dropping and recreating the index, or reorganizing the
index.

• If statistics are not current, update them using the runstats command.

– FETCH

This operator represents the fetching of columns from a table using a
specific RID.

Performance suggestions:

• Expand index keys to include the fetched columns so that the data
pages do not have to be accessed.

• Find the index related to the fetch and double-click its node to display
its statistics window. Ensure that the degree of clustering is high for the
index.

• Increase the buffer size if the I/O incurred by the fetch is greater than
the number of pages in the table.

• If statistics are not current, update them using the runstats command.

The quantile and frequent value statistics provide information about the
selectivity of predicates, which determines when index scans are
chosen over table scans. To update these statistics, use the runstats
command on a table with the WITH DISTRIBUTION clause.

– FILTER

This operator represents the application of residual predicates so that data
is filtered based on the criteria supplied by the predicates.

Performance suggestions:

• Ensure that you have used predicates that retrieve only the data you
require. For example, ensure that the selectivity value for the
predicates represents the portion of the table that you want returned.

• Ensure that the optimization class is at least 3 so that the optimizer
uses a join instead of a subquery. If this is not possible, try rewriting the
SQL query by hand to eliminate the subquery.

– GRPBY

This operator is the grouping of rows according to common values of
designated columns or functions. This operation is required to produce a
group of values or to evaluate set functions.

284 Tivoli Management Services Warehouse and Reporting

If no GROUP BY columns are specified, the GRPBY operator can still be
used if there are aggregation functions in the SELECT list, indicating that
the entire table is treated as a single group when doing that aggregation.

Performance suggestions:

• This operator represents a necessary operation. To improve access
plan costs, concentrate on other operators (such as scans and joins),
which define the set of rows to be grouped.

• To improve the performance of a SELECT statement that contains a
single aggregate function but no GROUP BY clause, try the following
methods:

- For a MIN(C) aggregate function, create an ascending index on C.
- For a MAX(C) aggregate function, create a descending index on C.

– HSJOIN

This operator is a hash join for which the qualified rows from tables are
hashed to allow direct joining, without pre-ordering the content of the
tables.

A join is necessary whenever there is more than one table referenced in a
FROM clause. A hash join is possible whenever there is a join predicate
that equates columns from two different tables. The join predicates have to
be exactly the same data type. Hash joins might also arise from a rewritten
subquery, as is the case with NLJOIN.

A hash join does not require that the input tables be ordered. The join is
performed by scanning the inner table of the hash join and generating a
lookup table by hashing the join column values. It then reads the outer
table, hashing the join column values, and checking in the lookup table
generated for the inner table.

Performance suggestions:

• Use local predicates (that is, predicates that reference one table) to
reduce the number of rows to be joined.

• Increase the size of the sort heap to make it large enough to hold the
hash lookup table in memory.

• If statistics are not current, update them using the runstats command.

– INSERT

This operator represents a necessary operation. To improve access plan
costs, concentrate on other operators (such as scans and joins), which
define the set of rows to be inserted.

 Chapter 4. IBM Tivoli Data Warehouse tuning 285

– IXAND

This operator represents the ANDing of the results of multiple index scans
using Dynamic Bitmap techniques. The operator allows ANDed predicates
to be applied to multiple indexes, to reduce underlying table accesses to a
minimum.

This operator is performed to:

• Narrow down the set of rows before accessing the base table
• AND together predicates applied to multiple indexes
• AND together the results of semi-joins, used in star joins

Performance suggestions:

• Over time, database updates might cause an index to become
fragmented, resulting in more index pages than necessary. This can be
corrected by dropping and recreating the index, or reorganizing the
index.

• If statistics are not current, update them using the runstats command.

• In general, index scans are most effective when only a few rows qualify.
To estimate the number of qualifying rows, the optimizer uses the
statistics that are available for the columns referenced in predicates. If
some values occur more frequently than others, it is important to
request distribution statistics by using the WITH DISTRIBUTION
clause for the runstats command. By using the non-uniform
distribution statistics, the optimizer can distinguish among frequently
and infrequently occurring values.

• IXAND can best exploit single column indexes, because start and stop
keys are critical in the use of IXAND.

• For star joins, create single-column indexes for each of the most
selective columns in the fact table and the related dimension tables.

– IXSCAN

This operator represents the scanning of an index to produce a reduced
stream of rows. The scanning can use optional start/stop conditions, or it
can apply to indexable predicates that reference columns of the index.

This operation is performed to narrow down the set of qualifying rows
before accessing the base table (based on predicates).

Performance suggestions:

• Over time, database updates might cause an index to become
fragmented, resulting in more index pages than necessary. This can be
corrected by dropping and recreating the index, or reorganizing the
index.

286 Tivoli Management Services Warehouse and Reporting

• When two or more tables are being accessed, access to the inner table
using an index can be made more efficient by providing an index on the
join column of the outer table.

• If statistics are not current, update them using the runstats command.

• In general, index scans are most effective when only a few rows qualify.
To estimate the number of qualifying rows, the optimizer uses the
statistics that are available for the columns referenced in predicates. If
some values occur more frequently than others, it is important to
request distribution statistics by using the WITH DISTRIBUTION
clause for the runstats command. By using the non-uniform
distribution statistics, the optimizer can distinguish among frequently
and infrequently occurring values.

– MSJOIN

This operator is a merge join for which the qualified rows from both outer
and inner tables must be in join-predicate order. A merge join is also called
a merge scan join or a sorted merge join.

A join is necessary whenever there is more than one table referenced in a
FROM clause. A merge join is possible whenever there is a join predicate
that equates columns from two different tables. It might also arise from a
rewritten subquery.

A merge join requires ordered input on joining columns, because the
tables are typically scanned only once. This ordered input is obtained by
accessing an index or a sorted table.

Performance suggestions:

• Use local predicates (that is, predicates that reference one table) to
reduce the number of rows to be joined.

• If statistics are not current, update them using the runstats command.

– NLJOIN

This operator is a nested loop join that scans (usually with an index scan)
the inner table once for each row of the outer table.

A join is necessary whenever there is more than one table referenced in a
FROM clause. A nested loop join does not require a join predicate, but
generally performs better with one.

A nested loop join is performed either:

• By scanning through the inner table for each accessed row of the outer
table

• By performing an index lookup on the inner table for each accessed
row of the outer table

 Chapter 4. IBM Tivoli Data Warehouse tuning 287

Performance suggestions:

• A nested loop join is likely to be more efficient if there is an index on the
join-predicate columns of the inner table (the table displayed to the
right of the NLJOIN operator). Check to see if the inner table is a
TBSCAN rather than an IXSCAN. If it is, consider adding an index on
its join columns.

• Another (less important) way to make the join more efficient is to create
an index on the join columns of the outer table so that the outer table is
ordered.

• If statistics are not current, update them using the runstats command.

– RETURN

This operator represents the return of data from a query to the user. This
is the final operator in the access plan graph and shows the total
accumulated values and costs for the access plan. This operator
represents a necessary operation.

Performance suggestion: Ensure that you have used predicates that
retrieve only the data you require. For example, ensure that the selectivity
value for the predicates represents the portion of the table that you want
returned.

– RIDSCN

This operator represents the scan of a list of RIDs that is obtained from
one or more indexes. This operator is considered by the optimizer when:

• Predicates are connected by OR keywords, or there is an IN predicate;
a technique called index ORing can be used, which combines results
from multiple index accesses on the same table.

• It is beneficial to use list prefetch for a single index access, because
sorting the row identifiers before accessing the base rows makes the
I/O more efficient.

– RPD

This is an operator that is used in the federated system to retrieve data
from a remote data source using a non-relational wrapper.

This operator is considered by the optimizer when it contains a remote
plan that will not be inspected by the optimizer. An RPD operator sends a
request to a remote non-relational data source to retrieve the query result.
The request is generated by the non-relational wrapper using the API
supported by the data source.

288 Tivoli Management Services Warehouse and Reporting

– SHIP

This operator is used in the federated system to retrieve data from a
remote data source. It is considered by the optimizer when it contains a
remote plan that is not inspected by the optimizer. A SHIP operator sends
an SQL SELECT statement to a remote data source to retrieve the query
result. The SELECT statement is generated using the SQL dialect
supported by the data source, and it can contain any valid query as
allowed by the data source.

– SORT

This operator represents the sorting of the rows in a table into the order of
one or more of its columns, optionally eliminating duplicate entries.

Sorting is required when no index exists that satisfies the requested
ordering, or when sorting is less expensive than an index scan. Sorting is
usually performed as a final operation when the required rows are fetched,
or to sort data before a join or a group by.

If the number of rows is high or if the sorted data cannot be piped, the
operation requires the costly generation of temporary tables.

Performance suggestions:

• Consider adding an index on the sort columns.

• Ensure that you have used predicates that retrieve only the data you
require. For example, ensure that the selectivity value for the
predicates represents the portion of the table that you want returned.

• Check that the prefetch size of the system temporary table space is
adequate, that is, it is not I/O bound. (To check this, select
Statement → Show statistics → Table spaces.)

• If frequent large sorts are required, consider increasing the values of
the following configuration parameters:

Sort heap size (sortheap): To change this parameter, right-click the
database in the Control Center, and then select Configure from the
pop-up menu. Select the Performance tab from the notebook that
opens.

Sort heap threshold (sheapthres): To change this parameter, right-click
the database instance in the Control Center, and then select
Configure from the pop-up menu. Select the Performance tab from
the notebook that opens.

• If statistics are not current, update them using the runstats command.

 Chapter 4. IBM Tivoli Data Warehouse tuning 289

– TBSCAN

This operator is a table scan (relation scan) that retrieves rows by reading
all the required data directly from the data pages.

This type of scan is chosen by the optimizer over an index scan when:

• The range of values scanned occurs frequently (that is, most of the
table must be accessed)

• The table is small

• Index clustering is low

• An index does not exist

Performance suggestions:

• An index scan is more efficient than a table scan if the table is large,
with most of the table's rows not being accessed. To increase the
possibility that an index scan is used by the optimizer for this situation,
consider adding indexes on columns for which there are selective
predicates.

• If an index already exists but was not used, check that there are
selective predicates on each of its leading columns. If these predicates
do exist, check that the degree of clustering is high for the index. (To
see this statistic, open the Table Statistics window for the table beneath
the sort, and select the Indexes button to bring up the Index Statistics
window.)

• Check that the prefetch size of the table space is adequate, that is, it is
not I/O bound. (To check this, select Statement → Show statistics →
Table spaces.)

• If the statistics are not current, update them using the runstats
command.

The quantile and frequent value statistics provide information about the
selectivity of predicates. For example, these statistics are used to
determine when index scans are chosen over table scans. To update
these values, use the runstats command on a table with the WITH
DISTRIBUTION clause.

– TEMP

This operator represents the action of storing data in a temporary table,
which is to be read back out by another operator (possibly multiple times).
The table is removed after the SQL statement is processed, if not before.

This operator is required to evaluate subqueries or to store intermediate
results. In some situations (such as when the statement can be updated),
it might be mandatory.

290 Tivoli Management Services Warehouse and Reporting

– TQUEUE

This operator represents a table queue that is used to pass table data from
one database agent to another when there are multiple database agents
processing a query. Multiple database agents are used to process a query
when parallelism is involved. Table queue types are:

• Local

The table queue is used to pass data between database agents within
a single node. A local table queue is used for intrapartition parallelism.

• Non-local

The table queue is used to pass data between database agents on
different nodes.

– UNION

This operator is the concatenation of streams of rows from multiple tables.
It represents a necessary operation. To improve access plan costs,
concentrate on other operators (such as scans and joins), which define the
set of rows to be concatenated.

– UNIQUE

This operator represents the elimination of rows having duplicate values
for specified columns.

Performance suggestion: This operator is not necessary if only a unique
index exists on appropriate columns.

– UPDATE

This operator represents the updating of data in the rows of a table, and it
is a necessary operation. To improve access plan costs, concentrate on
other operators (such as scans and joins), which define the set of rows to
be updated.

8. Rewrite the query or change the database design.

After you perform the analysis, you can first try to rewrite the query, using
some of the tips provided in this book.

After you have made your changes, re-run the query to see how much
improvement you get from your changes. If the elapse and CPU time is not as
required, return to step 5 and continue in the loop until you reach your
performance goal.

9. Close out.

This step finalizes all tuning activities on this SQL query and prepares the
lessons learned for future reference.

 Chapter 4. IBM Tivoli Data Warehouse tuning 291

SQL tuning scenario
We received some requests from the users saying that the report XYZ01 is
running slower than they wanted. Therefore, we requested information about
what query the XYZ01 report is using, but the users did not know. Therefore, we
had to get a snapshot from the queries running at the same moment as the
report was running. To do this, we can run the DB2 GET SNAPSHOT command,
or use the Active Monitor graphic tool.

In this case, we found that the query used on the XYZ01 report is the one shown
in Example 4-23.

Example 4-23 Query used on the XYZ01 report i

select empno,lastname, firstnme,edlevel
 from employee
 where UPPER(job)='MANAGER'
order by empno, lastname;

Now gather both technical and non-technical information about the report, the
query, and the application itself. This includes the data model, or information
extracted about table, and indexes on the tables used in the report, business
requirements, and so on.

Attention: All the commands and tools used in this review process come from
DB2. If you want to use this review process with other RDBMS, just look for
what similar commands your target RDBMS has and use them.

292 Tivoli Management Services Warehouse and Reporting

After performing this, you can request the access plan through Visual Explain. In
this case, you get the output shown in Figure 4-3.

Figure 4-3 Access plan showing that a tablescan was made

Figure 4-3 shows that the SQL query is doing a tablescan. However, if you do a
research on the data model or the DB2 catalog tables, you find that an index is
created for this example in the column JOB, similar to the following command:

create index IX_JOB
 on employee(JOB);

Therefore, why is the query optimizer not using the index that you created?
Because when you use a scalar function in a column that has an index that was
not created based on the same expression, DB2 has to retrieve each row, and
then use the function before making the comparison.

At this moment, you have to know why the SQL query is using that specific scalar
function. That is the real reason behind the need for grabbing business

 Chapter 4. IBM Tivoli Data Warehouse tuning 293

information. Based on the business information and application’s requirement
that you have, there is no need to use that scalar function because the
application always insert the jobs in uppercase. Therefore, remove the scalar
function from the query and request a new access plan. If your statistics are
updated, you might see an output similar to the one shown in Figure 4-4.

Figure 4-4 Access plan showing that an index scan was made

In the output shown in Figure 4-4 the steps in the access plan are:

1. Index scan based on the Employee’s IX_JOB index, shown here by the
IXSCAN node

2. Retrieving of the actual rows from the Employee table, shown here by the
FETCH node

294 Tivoli Management Services Warehouse and Reporting

3. After retrieving of the rows, a sort is made as requested, shown here by the
SORT node

4. A tablescan from the result set generated by the SORT, shown here by the
TBSCAN node

5. The delivery of the rows requested, shown here by the RETURN node

Check if your performance goal is reached. If it is not, go back to the analysis. Go
ahead and do some documentation as lessons learned, which can be used by
the developers or others DBAs.

4.7.3 General SQL-ANSI tuning tips

In this section, we describe some SQL tips that you can use when tuning your
SQL queries. We also provide some feedback in terms of numbers showing how
much that can help.

� Fetch required columns only

When reading a record, all columns and column values are always moved into
memory. If you have tables with a lot of columns and you only require
information from a few, a lot of unnecessary information must be loaded. With
SQL, you can select only the columns that you require to satisfy the data
request. If you specify the required columns in your select statements, the
optimizer might perform index only access.

There is additional CPU cost associated with each column that is selected or
fetched from the database. Higher I/O cost might also be experienced, if
sorting is required. By returning data that you do not require, you cause the
database to perform I/O it does not have to perform, thereby wasting
resources. In addition, it increases network traffic, which can also lead to
reduced performance. If the table is very large, a table scan will lock the table
during the time-consuming scan, preventing other users from accessing it,
hurting concurrency.

Another negative aspect of a table scan is that it tends to flush out data pages
from the cache with useless data. This reduces the ability to reuse useful data
in the cache, which increases disk I/O and affects performance.

Tip: You can use all the tips provided in the following list as a basis for your
tuning, but note that they might not be best choices for your problem. Every
time you make a change to your SQL query, compare the latest access plan
against the old one; this way you can be sure of which choices best fit your
environment.

 Chapter 4. IBM Tivoli Data Warehouse tuning 295

� Recommendations:

– Select or fetch only the columns that you require
– Never code “SELECT *” to retrieve all columns in a table

In Example 4-24, you can see that the total the cost of using “SELECT * ”,
instead of just the columns that you require, is higher. These numbers are
obtained from the DB2 Explain tool, but you can use any tool available in your
RDBMS.

Example 4-24 Using select * example

select *
 from employee e
 inner join department d on e.workdept = d.deptno
 inner join emp_act ea on ea.empno = e.empno
 inner join project p on p.projno = ea.projno
 where e.empno='000010';

Total cost: 51,5344

Example 4-25 shows a more efficient select example.

Example 4-25 A more efficient select example

select e.lastname, d.deptname, p.projname
 from employee e
 inner join department d on e.workdept = d.deptno
 inner join emp_act ea on ea.empno = e.empno
 inner join project p on p.projno = ea.projno
 where e.empno='000010';

Total cost: 38,6797

� UNION versus UNION ALL

When you use the UNION statement, keep in mind that, by default, it performs
the equivalent of a SELECT DISTINCT on the final result set. In other words,
UNION takes the results of two similar recordsets, combines them, and then
performs a SELECT DISTINCT to eliminate any duplicate rows. This process
occurs even if there are no duplicate records in the final recordset. If you
know that there are duplicate records, and this presents a problem for your
application, then use the UNION statement to eliminate the duplicate rows.
However, if you know that there will never be any duplicate rows, or if there
are, this does not present any problem to your application, then use the
UNION ALL statement instead of the UNION statement. The advantage of the
UNION ALL is that it does not perform the SELECT DISTINCT function, which
saves a lot of unnecessary SQL Server resources from being used.

296 Tivoli Management Services Warehouse and Reporting

Example 4-26 shows a UNION ALL example.

Example 4-26 Using UNION ALL

select t.creator, t.name, t.type, c.name, c.coltype, c.length,
c.scale
 from sysibm.systables as t
 INNER JOIN sysibm.syscolumns as C
 ON c.tbname = t.name
 and c.tbcreator = t.creator
 where creator='DENISV'
UNION ALL
select t.creator, t.name, t.type, c.name, c.coltype, c.length, c.scale
 from sysibm.systables as t
 INNER JOIN sysibm.syscolumns as C
 ON c.tbname = t.name
 and c.tbcreator = t.creator
 where creator='SYSIBM';

Total cost: 161,776

Example 4-27 shows a UNION example.

Example 4-27 Using UNION

select t.creator, c.tbname, t.type,
 c.name, c.coltype, c.length, c.scale

 from sysibm.systables as t
 INNER JOIN sysibm.syscolumns as C
 ON c.tbname = t.name
 and c.tbcreator = t.creator
 where creator='DENISV'
UNION
select t.creator, c.tbname, t.type,

 c.name, c.coltype, c.length, c.scale
 from sysibm.systables as t
 INNER JOIN sysibm.syscolumns as C
 ON c.tbname = t.name
 and c.tbcreator = t.creator
 where creator='SYSIBM';

Total cost: 161,778

The individual costs are very close; however, the DB2 Query Optimizer
changed the SQL by itself, as shown in Example 4-28.

 Chapter 4. IBM Tivoli Data Warehouse tuning 297

Example 4-28 DB2 Query Optimizer changing the SQL

SELECT DISTINCT Q7.$C0 AS “CREATOR”, Q7.$C1 AS “NAME”, Q7.$C2 AS
“TYPE”, Q7.$C3 AS “NAME”, Q7.$C4 AS “COLTYPE”, Q7.$C5 AS “LENGTH”,
Q7.$C6 AS “SCALE”
FROM
 (SELECT Q1.CREATOR, Q1.NAME, Q1.TYPE, Q2.NAME, Q2.COLTYPE,
Q2.LENGTH, Q2.SCALE
 FROM SYSIBM.SYSTABLES AS Q1, SYSIBM.SYSCOLUMNS AS Q2
 WHERE (Q2.TBNAME = Q1.NAME) AND (Q2.TBCREATOR = 'SYSIBM') AND
(Q1.CREATOR = 'SYSIBM')
 UNION ALL
 SELECT Q4.CREATOR, Q4.NAME, Q4.TYPE, Q5.NAME, Q5.COLTYPE, Q5.LENGTH,
Q5.SCALE
 FROM SYSIBM.SYSTABLES AS Q4, SYSIBM.SYSCOLUMNS AS Q5
 WHERE (Q5.TBNAME = Q4.NAME) AND (Q5.TBCREATOR = 'DENISV') AND
(Q4.CREATOR = 'DENISV')) AS Q7

� DISTINCT

Carefully evaluate whether your SELECT query requires the DISTINCT
clause. Some developers automatically add this clause to every one of their
SELECT statements, even when it is not necessary. This practice must be
stopped. Use the DISTINCT clause in SELECT statements only if you know
that duplicate returned rows are a possibility, because having duplicate rows
in the result set causes problems with your application. The DISTINCT clause
creates extra work and reduces the physical resources that other SQL
statements have at their disposal. Because of this, use the DISTINCT clause
only if necessary.

Example 4-29 shows an example without the DISTINCT clause.

Example 4-29 Not using DISTINCT keyword

select e.lastname, d.deptname, p.projname
 from employee e
 inner join department d on e.workdept = d.deptno
 inner join emp_act ea on ea.empno = e.empno
 inner join project p on p.projno = ea.projno;

Total cost: 87,6521

Example 4-30 shows an example with the DISTINCT clause.

Example 4-30 Using DISTINCT keyword

select DISTINCT e.lastname, d.deptname, p.projname
 from employee e

298 Tivoli Management Services Warehouse and Reporting

 inner join department d on e.workdept = d.deptno
 inner join emp_act ea on ea.empno = e.empno
 inner join project p on p.projno = ea.projno;

Total cost: 87,7049

� Operator and operands

In a WHERE clause, the various operators and operands that are used
directly affect how fast a query is run. This is because some operators and
operands lend themselves to speed over others. You might not be able to
choose between them, but there are times when you can. Those operators
and operands listed at the top of Table 4-5 produce results faster than those
listed at the bottom.

Table 4-5 Operator and operands

� NOT IN versus NOT EXISTS

If you currently have a query that uses NOT IN, which offers poor
performance, try to use NOT EXISTS instead, which offers better
performance. It is a fairly common request to write an SQL query to compare
two tables that have a logical relationship between them, but was not
enforced, for example, during a load.

Example 4-31 and Example 4-32 show you how to do the same query in
different ways.

Example 4-31 Using a NOT EXISTS

select e.lastname
 from employee e
 where NOT EXISTS (select 1 from emp_act a where a.empno = e.empno);

Operators Operands

= A single literal used by itself on one side of an operator

>, >=, <, <= A single column name used by itself on one side of an operator; a single
parameter used by itself on one side of an operator

LIKE A multi-operand expression on one side of an operator

<>, != A single exact number on one side of an operator

Other numeric numbers (other than exact), dates, and times

Character data, NULLs

 Chapter 4. IBM Tivoli Data Warehouse tuning 299

Total cost: 85,3155

Example 4-32 Using a NOT IN

select e.lastname
 from employee e
 where e.empno NOT IN (select a.empno from emp_act a);

Total cost: 137,335

When you have a choice between the IN or the EXISTS clause in your SQL,
your preference must be the use of the EXISTS clause, as it is usually more
efficient and performs faster when you want to compare the main SQL section
with a big result set in the subquery. However, if the result set from the
subquery is small, you can use IN, which performs better in many cases.

� IN versus BETWEEN

When you have a choice between the IN or the BETWEEN clauses in your
SQL, your preference must be the use of the BETWEEN clause, because it is
much more efficient if you have an index in the column that you are searching
in. If not, the IN clause might be the best option. Therefore, every time you
make a change, you want to know your environment through a data model or
the information, you can get on the Catalog Tables, Data Dictionary, or
System Tables, and check the access plan, to see if the change is an
improvement. For examples, see Example 4-33 and Example 4-34.

Example 4-33 Using IN

select e.lastname
 from employee e
 where e.edlevel in (14,15,16);

Total cost(Index): 22,5895
Total cost(No-Index): 25,7872

Example 4-34 Using BETWEEN

select e.lastname
 from employee e
 where e.edlevel BETWEEN 14 and 16;

Total cost(Index): 21,0947
Total cost(No-Index): 25,802

Assuming there is a useful index on edlevel, the Query Optimizer can locate a
range of numbers much faster (using BETWEEN) than it can find a series of

300 Tivoli Management Services Warehouse and Reporting

numbers using the IN clause (which is really just another form of the OR
clause).

If your WHERE clause includes an IN operator along with a list of values to be
tested in the query, order the list of values so that the most frequently found
values are placed at the beginning of the list, and the less frequently found
values are placed at the end of the list. This can increase the speed of the
performance because the IN option returns true as soon as any of the values
in the list produce a match. The sooner the match is made, the faster the
query is completed.

� Scalar functions

If a scalar function is used in the WHERE clause, the RDBMS might not use
an appropriate existing index. In some cases, you can avoid this problem by
rewriting your query in a different manner. For example, if you want to select
all the orders for a specific year or month, use a range and not the scalar
functions YEAR or MONTH.

Example 4-35 shows a scalar function usage example.

Example 4-35 Using scalar function

select *
 from sales
 where YEAR(sales_date) = 2006;

Total cost: 12,9328

Example 4-36 shows an example where the scalar function is not used.

Example 4-36 Not using scalar function

select *
 from sales
 where sales_date between '2006-01-01' and '2006-12-31';

Total cost: 12,9328

The individual costs are equal; however, the DB2 Query Optimizer changed
the first SQL by itself, as shown in Example 4-37.

Example 4-37 DB2 Query Optimizer changing the first SQL

SELECT Q1.SALES_DATE AS “SALES_DATE”, Q1.SALES_PERSON AS
“SALES_PERSON”,
 Q1.REGION AS “REGION”, Q1.SALES AS “SALES”
 FROM DENISV.SALES AS Q1
 WHERE ('1995-01-01' <= Q1.SALES_DATE)

 Chapter 4. IBM Tivoli Data Warehouse tuning 301

 AND (Q1.SALES_DATE < '1996-01-01');

� SUBSTRING functions

If possible, try to avoid using the SUBSTRING function in your WHERE
clauses. Depending on how it is constructed, using the SUBSTRING function
can force a table scan instead of allowing the optimizer to use an index
(assuming there is one). If the substring you are searching for does not
include the first character of the column you are searching for, then a table
scan is performed.

If possible, avoid using the SUBSTRING function and use the LIKE condition
instead for better performance. Instead of performing what is shown in
Example 4-38, perform the actions shown in Example 4-39.

Example 4-38 Using the SUBSTRING function

select lastname, edlevel
 from employee
 where substr(lastname,1,1) = 'H';

Total Cost: 25,8085

Example 4-39 shows using the LIKE condition example.

Example 4-39 Using the LIKE condition

select lastname, edlevel
 from employee
 where lastname like 'H%';

Total Cost: 25,8013

If you decide to make this choice, keep in mind that you might want your LIKE
condition to be sargable, that is, you must not place a wildcard in the first position.

� String concatenation

Where possible, avoid string concatenation in your SQL code, because it is
not a fast process, contributing to overall slower performance of your
application.

� If you have a WHERE clause that includes expressions connected by two or
more AND operators, the RDBMS will evaluate them from left to right in the
order that they are written. This assumes that no parenthesis has been used
to change the order of execution. Because of this, you might want to consider
one of the following tips when using AND:

– Locate the least feasible AND expression first. This way, if the AND
expression is false, the clause will end immediately, saving time.

302 Tivoli Management Services Warehouse and Reporting

– If both parts of an AND expression are equally likely to be false, put the
least complex AND expression first. This way, if it is false, less work is
required to evaluate the expression.

� If you want to boost the performance of a query that includes an AND
operator in the WHERE clause, consider:

– Of the search criterion in the WHERE clause, at least one of them must be
based on a highly selective column that has an index.

– If at least one of the search criterion in the WHERE clause is not highly
selective, consider adding indexes to all of the columns referenced in the
WHERE clause.

– If none of the columns in the WHERE clause are selective enough to use
an index on their own, consider creating a covering index for this query.

� The Query Optimizer performs a table scan or a clustered index scan on a
table if the WHERE clause in the query contains an OR operator and if any of
the referenced columns in the OR clause are not indexed (or does not have a
useful index). Because of this, if you use many queries with OR clauses, you
will want to ensure that each referenced column in the WHERE clause has a
useful index.

� OR versus UNION ALL

A query with one or more OR clauses can sometimes be rewritten as a series
of queries that are combined with a UNION ALL statement, to boost the
performance of the query. If you have a query that uses ORs and does not
make the best use of indexes, consider rewriting it as a UNION ALL, and then
test the performance. Only through testing can you be sure that one version
of your query is faster than another.

� Sorting

Do not use ORDER BY in your SELECT statements unless you really have to,
because it adds an extra overhead. For example, it might be more efficient to
sort the data at the client than at the server. In other cases, it can be that the
client does not require sorted data to achieve its goal. The key here is to
remember that you must not automatically sort data unless you know it is
necessary. Whenever the RDBMS has to perform a sorting operation,
additional resources have to be used to perform this task. Sorting often
occurs when any of the following SQL statements are issued:

Important: The tips mentioned previously can be suitable to Oracle
with the rule-based optimizer, but are not suitable to Oracle running the
cost-based optimizer. In this last case, Oracle evaluates from right to
left. Keep this in mind when tuning your SQL queries in Oracle.

 Chapter 4. IBM Tivoli Data Warehouse tuning 303

– ORDER BY
– GROUP BY
– SELECT DISTINCT
– UNION
– CREATE INDEX (generally not as critical because this happens less often)

In many cases, these commands cannot be avoided. However, there are a
few ways to reduce sorting overhead. These include:

– Keep the number of rows to be sorted to a minimum. Do this by only
returning those rows that absolutely have to be sorted.

– Keep the number of columns to be sorted to the minimum. In other words,
do not sort more columns than required.

– Keep the width (physical size) of the columns to be sorted to a minimum.

– Sort column with number data types instead of character data types.

If you have to sort by a particular column often, consider making that column
a clustered index. This is because the data is already presorted for you and
the RDBMS is smart enough not to resort the data.

Example 4-40 shows sorting based on two columns.

Example 4-40 Sorting based on two columns

select empno,lastname, firstnme,edlevel
 from employee
order by empno, lastname;

Total cost: 25,8074

Example 4-41 shows sorting based on one column.

Example 4-41 Sorting based on one column

select empno,lastname, firstnme,edlevel
 from employee
order by empno;

Total cost: 25,7962

Example 4-42 shows a no sorting example.

Example 4-42 No sorting

select empno,lastname, firstnme,edlevel
 from employee;

304 Tivoli Management Services Warehouse and Reporting

Total cost: 25,774

� If your SELECT statement contains a HAVING clause, write your query so
that the WHERE clause does most of the work (removing the unnecessary
rows) instead of the HAVING clause doing the work of removing unnecessary
rows. Using the WHERE clause appropriately can eliminate unnecessary
rows before they get to the GROUP BY and HAVING clause, because this
saves unnecessary work and boosts performance. This happens because of
the way that the RDBMS does its job. First, the WHERE clause is used to
select the appropriate rows that have to be grouped. Next, the GROUP BY
clause divides the rows into sets of grouped rows, and then aggregates their
values. And lastly, the HAVING clause eliminates unnecessary aggregated
groups. If the WHERE clause is used to eliminate as many of the
unnecessary rows as possible, this means the GROUP BY and the HAVING
clauses will have less work to do, and this boosts the overall performance of
the query.

Example 4-43 and Example 4-44 show select examples.

Example 4-43 Select example

select sex,edlevel,count(*) as QTY
 from employee
where edlevel IN (14,18,20)
group by sex,edlevel;

Total cost: 25,791

Example 4-44 Select example

select sex,edlevel,count(*) as QTY
 from employee
group by sex,edlevel
having edlevel IN (14,18,20);

Total cost: 25,791

However, the DB2 Optimizer changed the query, as shown in Example 4-45.

Example 4-45 DB2 Optimizer changed the query

SELECT Q3.$C1 AS “SEX”, Q3.$C0 AS “EDLEVEL”, Q3.$C2 AS “QTY”
FROM
 (SELECT Q2.$C1, Q2.$C0, COUNT(*)
 FROM
 (SELECT Q1.SEX, Q1.EDLEVEL
 FROM DENISV.EMPLOYEE AS Q1

 Chapter 4. IBM Tivoli Data Warehouse tuning 305

 WHERE Q1.EDLEVEL IN (14, 18, 20)) AS Q2
 GROUP BY Q2.$C1, Q2.$C0) AS Q3

Therefore, as shown in Example 4-45, the optimizer decided by itself that
filtering the data before performing the GROUP BY saves some resources.

� Subquery blocks

Minimize the number of table lookups (subquery blocks) in queries,
particularly if your statements include subquery SELECTs or multicolumn
UPDATEs.

Example 4-46 shows separate subqueries example.

Example 4-46 Separate subqueries

select lastname, job,edlevel, salary
 from employee
 where comm in (select max(comm) from employee)
 and salary in (select max(salary) from employee);

Total cost: 77,3774

Example 4-47 shows combined subqueries example.

Example 4-47 Combined subqueries

select lastname, job,edlevel, salary
 from employee
 where (comm,salary) IN (select max(comm),max(salary) from employee);

Total cost: 51,5801

Example 4-48 shows an example of combined subqueries using inline view
technique.

Example 4-48 Combined subqueries using inline view technique

select lastname, job,edlevel, salary
 from employee as e
 inner join
 (select max(comm) c, MAX(SALARY) s
 from employee) as aux
 on aux.c = e.comm
 and aux.s = e.salary;

Total cost: 51,5801

306 Tivoli Management Services Warehouse and Reporting

4.7.4 Database-specific tuning

Each database manager might have some tuning that can be done, just for a
particular RDBMS. This section covers tuning for three RDBMS that are
supported.

DB2
In this section, we discuss the other actions that you can do when performing
SQL statements against a DB2 database.

Concurrency control and isolation level
An isolation level determines how data is locked or isolated from other processes
while the data is being accessed. The isolation level is in effect for the duration of
the unit of work. DB2 supports the following isolation levels, listed in the order of
most restrictive to least restrictive:

� Repeatable Read

This isolation level locks all the rows in an application that are referenced
within a transaction. When a program uses repeatable read protection, rows
referenced by the program cannot be changed by other programs until the
program ends the current transaction.

� Read Stability

This isolation level locks only the rows that an application retrieves within a
transaction. Read stability ensures that any qualifying row that is read during
a transaction is not changed by other application processes until the
transaction is completed, and that any row changed by another application
process is not read until the change is committed by that process.

� Cursor Stability

This isolation level locks any row accessed by a transaction of an application
while the cursor is positioned on the row. The lock remains in effect until the
next row is fetched or the transaction is terminated. If any data is changed in a
row, the lock is held until the change is committed to the database.

� Uncommitted Read

This isolation level allows an application to access uncommitted changes of
other transactions. The application does not lock other applications out of the
row that it is reading, unless the other application attempts to drop or alter the
table. This is sometimes referred to as dirty reads.

Recommendations
Consider the following recommendations:

 Chapter 4. IBM Tivoli Data Warehouse tuning 307

� Make sure that you know the isolation level under which you are running. Do
not count on default values, which can change based on how you access the
database.

� Because the isolation level determines how data is locked and isolated from
other processes while the data is being accessed, you must select an
isolation level that balances the requirements of concurrency and data
integrity for your particular application. The isolation level that you specify is in
effect for the duration of the unit of work.

Locking
To provide concurrency control and prevent uncontrolled data access, the
database manager places locks on tables, table blocks, or table rows. A lock
associates a database manager resource with an application, called the lock
owner, to control how other applications can access the same resource. Locking
is a fundamental process of any database manager and is used to ensure the
integrity of the data. However, when maintaining these locks, there is a potential
impact on the concurrency and throughput of your application.

The database manager uses a number of factors to determine whether to use
row level or table level locking:

� The different isolation levels described previously are used to control access
to uncommitted data, prevent lost updates, allow nonrepeatable reads of data,
and prevent phantom reads. Use the minimum isolation level that satisfies
your application requirements.

� The access plan selected by the optimizer: Table scans, index scans, and
other methods of data access each require different types of access to the
data.

� The LOCKSIZE attribute for the table: This parameter indicates the
granularity of the locks used when the table is accessed. The choices are
either ROW for row locks or TABLE for table locks.

� The amount of memory devoted to locking: The amount of memory devoted to
locking is controlled by the locklist database configuration parameter.

Recommendations
Consider the following recommendations:

� COMMIT as frequently as possible or whenever it is practical to do so, to
release any locks that your application holds. If possible, design your
application so that you can easily vary the commit frequency for large batch
operations. This allows you to optimally balance the throughput and
concurrency of your system.

� Use ALTER TABLE... LOCKSIZE TABLE for read-only tables. This reduces
the number of locks required by database activity.

308 Tivoli Management Services Warehouse and Reporting

� If the lock list fills, performance can degrade due to lock escalations and
reduced concurrency on shared objects in the database. If lock escalations
occur frequently, increase the value of locklist, maxlocks, or both.

Query tuning
The following SQL statement clauses might improve the performance of your
application:

� Use the FOR UPDATE clause to specify the columns that can be updated by
a subsequent positioned UPDATE statement.

� Use the FOR READ/FETCH ONLY clause to make the returned columns read
only.

� Use the OPTIMIZE FOR n ROWS clause to give priority to retrieve the first n
rows in the full result set.

� Use the FETCH FIRST n ROWS ONLY clause to retrieve only a specified
number of rows.

� Use the DECLARE CURSOR WITH HOLD statement to retrieve rows one at
a time and maintain cursor position after a commit.

Take advantage of row blocking by specifying the FOR READ ONLY, FOR
FETCH ONLY, OPTIMIZE FOR n ROWS clause, or if you declare your cursor as
SCROLLing. This improves performance and, in addition, improves concurrency
because exclusive locks are never held on the rows retrieved.

Oracle
In this section, we discuss the other actions that you can do when performing
SQL statements against an Oracle database.

Concurrency control and isolation level
An isolation level determines how data is locked or isolated from other processes
while the data is being accessed. The isolation level is in effect for the duration of
the unit of work. Oracle supports the following isolation levels:

� Read committed

This isolation level allows an application to only access committed changes
made to the data before the query began. If the query is run twice it might
bring changed and committed data, because Oracle does not stop other
transactions from changing the data that your query is reading, and you can
experience both nonrepeatable read and phantoms. But at all times, you can
only read committed data. This option is the Oracle default.

� Read-only

 Chapter 4. IBM Tivoli Data Warehouse tuning 309

This isolation level allows an application to see only those changes that are
already committed at the time the transaction began, but does not allow the
current transaction to do any INSERT, UPDATE, and DELETE statements
(other transactions or applications might still update data, but not the READ
ONLY transaction).

� Serializable

This isolation level allows an application to see only those changes that are
already committed at the time the transaction began, plus those changes
made by the transaction itself through INSERT, UPDATE, and DELETE
statements.

Recommendations
Consider the following recommendations:

� Make sure that you know the isolation level under which you are running. Do
not count on default values, which can change based on how you access the
database.

� Because the isolation level determines how data is locked and isolated from
other processes while the data is being accessed, you must select an
isolation level that balances the requirements of concurrency and data
integrity for your particular application. The isolation level that you specify is in
effect for the duration of the unit of work.

Locking
To provide concurrency control and prevent uncontrolled data access, the
database manager places locks on tables, table blocks, or table rows. A lock
associates a database manager resource with an application, called the lock
owner, to control how other applications can access the same resource. Locking
is a fundamental process of any database manager and is used to ensure the
integrity of the data. But while maintaining these locks, there is a potential impact
on the concurrency and throughput of your application.

There are a number of factors that the database manager uses to determine
whether to use row level or table level locking:

� The different isolation levels described previously are used to control access
to uncommitted data, prevent lost updates, allow nonrepeatable reads of data,
and prevent phantom reads. Use the minimum isolation level that satisfies
your application requirements.

� The access plan selected by the optimizer: Table scans, index scans, and
other methods of data access each require different types of access to the
data.

� The amount of memory devoted to locking: The amount of memory devoted to
locking is controlled by the locklist database configuration parameter.

310 Tivoli Management Services Warehouse and Reporting

Recommendations
Consider the following recommendations:

� COMMIT as frequently as possible or whenever it is practical to do so, to
release any locks that your application holds. If possible, design your
application so that you can easily vary the commit frequency for large batch
operations. This allows you to optimally balance the throughput and
concurrency of your system.

� To reduce the number of locks required by database activity on any table that
does not change, you can choose to put them on a specific table space, and
then mark the table space as read-only, as shown in Example 4-49.

Example 4-49 Changing a table space to read only

ALTER TABLESPACE <tablespace_name> READ ONLY;

Query tuning
The following SQL statement clause might improve the performance of your
application.

� If you want to delete all the rows from a table, you can use the TRUNCATE
statement. The difference between the DELETE FROM and the TRUNCATE
commands is that TRUNCATE does not do any logging at all and any
DELETE triggers on that table are not fired.

� Use the FOR UPDATE clause to specify the columns that can be updated by
a subsequent positioned UPDATE statement, as shown in Example 4-50.

Example 4-50 SELECT FOR UPDATE

SELECT cols FROM tables [WHERE...] FOR UPDATE [OF columns] [NOWAIT];

SQL Server
In this section, we discuss other actions that you can do when performing SQL
statements against an SQL Server database.

Concurrency control and isolation level
An isolation level determines how data is locked or isolated from other processes
while the data is being accessed. The isolation level is in effect for the duration of
the unit of work. SQL Server supports the following isolation levels:

� Read uncommitted

This isolation level allows an application to access uncommitted changes
made by other transactions. This is also known as dirty reads. The application
does not lock other applications out of the row that it is reading, unless the
other application attempts to drop or alter the table.

 Chapter 4. IBM Tivoli Data Warehouse tuning 311

� Read committed

This isolation level allows an application to only access committed changes
made to the data before the query began. If the query is run twice, it might
bring changed and committed data, because the SQL Server does not stop
other transactions from changing the data your query is reading, and you can
experience both nonrepeatable read and phantoms. But at all times, you can
only read committed data. This option is the SQL Server default.

� Repeatable read

This isolation level locks only the rows that an application retrieves within a
transaction. Read stability ensures that any qualifying row that is read during
a transaction is not changed by other application processes until the
transaction is completed, and that any row changed by another application
process is not read until the change is committed by that process.

� Snapshot

This isolation level allows an application to see only those changes that are
already committed at the time the transaction began, plus those changes
made by the transaction itself through INSERT, UPDATE, and DELETE
statements.

� Serializable

This isolation level allows an application to see only those changes that are
already committed at the time the transaction began, plus those changes
made by the transaction itself through INSERT, UPDATE, and DELETE
statements. This prevents other transactions not only from modifying data that
is being read by your current transaction until your active transaction is
completed, but also inserts new rows with key values that are in the range of
keys that is read by your active transaction.

Recommendations
Consider the following recommendations:

� Make sure you that know the isolation level under which you are running. Do
not count on default values, which can change based on how you access the
database.

� Because the isolation level determines how data is locked and isolated from
other processes while the data is being accessed, you must select an
isolation level that balances the requirements of concurrency and data
integrity for your particular application. The isolation level that you specify is in
effect for the duration of the unit of work.

312 Tivoli Management Services Warehouse and Reporting

Locking
To provide concurrency control and prevent uncontrolled data access, the
database manager places locks on tables, table blocks, or table rows. A lock
associates a database manager resource with an application, called the lock
owner, to control how other applications can access the same resource. Locking
is a fundamental process of any database manager and is used to ensure the
integrity of the data. But while maintaining these locks, there is a potential impact
on the concurrency and throughput of your application.

The database manager uses a number of factors to determine whether to use
row level or table level locking:

� The different isolation levels described previously are used to control access
to uncommitted data, prevent lost updates, allow nonrepeatable reads of data,
and prevent phantom reads. Use the minimum isolation level that satisfies
your application requirements.

� The access plan selected by the optimizer: Table scans, index scans, and
other methods of data access each require different types of access to the
data.

� The amount of memory devoted to locking: The amount of memory devoted to
locking is controlled by the locklist database configuration parameter.

Recommendations
Consider the following recommendations:

� COMMIT as frequently as possible or whenever it is practical to do so, to
release any locks your application holds. If possible, design your application
so that you can easily vary the commit frequency for large batch operations.
This allows you to optimally balance the throughput and concurrency of your
system.

� To reduce the number of locks required by database activity on any table that
do not change, you can choose to put them on a specific filegroup, and then
mark the filegroup as read-only, as shown in Example 4-51.

Example 4-51 Changing a filegroup to read-only

ALTER DATABASE AdventureWorksDW
MODIFY FILEGROUP filegroup1 READ_ONLY;

 Chapter 4. IBM Tivoli Data Warehouse tuning 313

Query tuning
The following SQL statement clause might improve the performance of your
application.

� If you want to delete all rows from a table, you can use the TRUNCATE
statement. The difference between the DELETE FROM and the TRUNCATE
commands is that the TRUNCATE does not do any logging at all and any
DELETE triggers on that table are not fired.

� Use the TOP clause to retrieve only a specified number of rows, or a
percentage of them, as shown in Example 4-52.

Example 4-52 Select example

select TOP(10) PERCENT *
 from prospectivebuyer;

314 Tivoli Management Services Warehouse and Reporting

Chapter 5. Integrating data from external
or third-party applications
into Tivoli Data Warehouse

This chapter provides information about how to integrate data provided by
custom or third-party data sources into the Tivoli Data Warehouse Version 2.1. It
also introduces some ways of presenting information from third-party
warehouses and auxiliary data sources through the Tivoli Enterprise Portal
(TEP).

This chapter discusses the following topics:

� “The Tivoli Monitoring V6.1 Universal Agent” on page 316

� “Warehousing Data using IBM Tivoli Monitoring 6.1 Universal Agent (script
provider)” on page 327

� “Warehousing data using IBM Tivoli Monitoring 6.1 Universal Agent (ODBC
provider)” on page 348

� “Tivoli Storage Manager Universal Agent in the Tivoli Enterprise Portal” on
page 371

� “Viewing data in Tivoli Enterprise Portal Server using an external ODBC data
source” on page 379

5

© Copyright IBM Corp. 2007. All rights reserved. 315

5.1 The Tivoli Monitoring V6.1 Universal Agent

The Tivoli Monitoring V6.1 Universal Agent is a generic agent used to collect
data from systems and applications in your network. In turn, this data can be
stored in the Tivoli Data Warehouse and can also be summarized and
aggregated using the Warehouse Proxy and Summarization and Pruning agent
functionality. This data can also be used and visualized in the Tivoli Enterprise
Portal. You can use all standard TEP data viewing options with the Universal
Agent.

It is important to understand the difference between standard Tivoli Enterprise
Monitoring Agents and IBM Tivoli Universal Agent, because these two types of
agents complement each other to provide a robust and completely flexible
monitoring solution. Tivoli Enterprise Monitoring Agents use a static set of
hard-coded attributes (in other words, predefined data), therefore they cannot be
enhanced by the field personnel to see more than they are developed for. Using
the Universal Agent, you can dynamically create custom attributes and catalogs.
It adds to monitoring solutions to make them complete and flexible for all
platforms.

Most applications and systems have additional information that can be
discovered by looking through the log files or using custom programs to query
them. By combining this information with the power of the Tivoli Data
Warehouse, we can generate management information to provide trending or
capacity reports, which can benefit owners and users of certain application or
system types.

The benefits of using the Universal Agent include:

� Monitors only the data attributes that interest you (configured through metafile
applications)

� Enables you to respond quickly to changing monitoring and management
scenarios; for example, changes in the metafile can be easily made to
support new features in an application.

� Monitors data not supported by other Tivoli Enterprise Monitoring Agents

� Integrates data from virtually any operating system and any source

� Gives you control of attributes and surfacing of data

� Provides a means of agentless monitoring

316 Tivoli Management Services Warehouse and Reporting

5.1.1 IBM Tivoli Universal Agent architecture

Figure 5-1 shows the high-level architecture and data flow for the Universal
Agent.

Figure 5-1 Universal Agent high-level architecture and data flow

The data source for the Universal Agent is provided by the installation. It can be a
log file, a script, an Open Database Connectivity (ODBC) data source, a
Windows Management Instrumentation (WMI) query, or a program that the site
creates or customizes to feed data to the Universal Agent.

Metafiles map out data that is coming into a Universal Agent. They are used to
define the data structure to be monitored. In turn, these metafiles also act as the
table structure for the Tivoli Data Warehouse upon historical collection
enablement.

Data providers serve as the data interfaces for the Universal Agent. In other
words, they are the ears of the Universal Agent. Data collected by the Universal
Agents can be collected and used through the Tivoli Enterprise Portal, just like
the data collected by the other Tivoli Enterprise Monitoring Agents.

Data providers, Universal Agent, and the IBM Tivoli Monitoring Agents can all
reside on the same machine or they can be separated as the situation requires.
Although it is useful from a conceptual standpoint to view data providers as
autonomous entities, they usually run as threads inside the main Universal Agent
process.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 317

It is possible to run more than one Universal Agent on a host, but it is generally
not necessary, because one Universal Agent can monitor data from multiple
Simple Network Management Protocol (SNMP) agents, ODBC data sources,
application programming interface (API) clients, scripts, and socket clients.

5.1.2 Data providers: Informing IBM Tivoli Universal Agent how to
collect and monitor

Data is collected from the monitoring environment and passed to IBM Tivoli
Universal Agent through structures named data providers. Data providers work
as IBM Tivoli Universal Agent threads, using applications named metafiles to
define the structures to be monitored. Data providers can be analyzed as
IBM Tivoli Universal Agent autonomous entities. They are used to define how
data is collected from systems and hosts.

Data providers enable the following activities:

� Validate and load metafile applications

� Collect data from different sources, such as logs, URLs, and SNMP agents

� Pass collected data and information about metafile definitions to IBM Tivoli
Universal Agent

We can choose from nine data provider categories depending on our monitoring
requirements. These are: API Server, API-Socket-File-Script (ASFS), File, HTTP,
ODBC, Post, Script, SNMP, and Socket. Table 5-1 lists the data providers that are
available with the Tivoli Universal Agent.

Table 5-1 IBM Tivoli Universal Agent data providers

Type Description

API Server Enables you to collect data from resources on remote machines where the
IBM Tivoli Universal Agent API client software is supported

API, Socket, File,
Script (ASFS)

Consolidates four types of data providers into one package, which is started as a
single thread to save resource usage; this is the default data provider when you
install the IBM Tivoli Universal Agent.

File Monitors sequential files, such as system or message logs; provides the most
direct, simplest method of collecting data

HTTP Enables monitoring of Internet URLs for availability and response time; you can
specify URLs to monitor in a startup configuration file or within Tivoli Enterprise
Portal situations.

ODBC Enables data collection from ODBC-compliant databases using SQL Select
statements and stored procedures; only available on Windows

318 Tivoli Management Services Warehouse and Reporting

The right choice of a data provider depends on the type of data that you want to
monitor and the source of the data. For example, if the operational system is
z/OS, it might not be possible to use an API data provider. In this case, using a
socket data provider is a better choice. Table 5-2 lists the data source and related
data providers.

Table 5-2 Data source and preferred data providers

Post TCP/IP socket application with predefined data; enables you to send ad hoc
notifications such as messages, alerts, and status

Script Enables data collection from any script or program that sends results to standard
output

SNMP Provides the functionality of an SNMP manager, including network discovery, trap
monitoring, and Management Information Base (MIB) data collection

Socket Listens on a TCP/IP socket for data sent using program-to-program
communication; enables you to collect data from remote devices or machines for
which no IBM Tivoli Universal Agent API support is available

Type Description

Data source Preferred data providers

Log files File

Ad hoc notifications such as messages, alerts, and status
information

Post

Application internals (supported API client operating
system)

API Server

Application internals (non-supported API client operating
system) using TCP/IP

Socket

Any combination of the following log files:
� Application internals (supported API client operating

system)
� Application internals (non-supported API client

operating system)
� Stdout messages produced by a script or program

API, Socket, File, Script
(ASFS)

Internet or intranet URLs HTTP

Relational databases ODBC

SNMP MIB data SNMP

Stdout messages produced by a script or program Script

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 319

The Universal Agent has the ability to run several instances of the same data
provider on the same monitored host. The reasons for this can be:

� Run test and production versions of the Universal Agent on the same host

� Balance the data load of an IBM Tivoli Universal Agent that is overloaded

� Connect to several IBM Tivoli Universal Agents on different Tivoli Enterprise
Monitoring Servers

Universal Agent and its data providers are configured to communicate over a
variety of ports. Every port is changeable in the KUMENV file specifying the
correct variable. Table 5-3 lists the typical Universal Agent ports.

Table 5-3 Typical ports used by the IBM Tivoli Universal Agent

By default, console commands target the primary Universal Agent using the
console port 7700. We can change this port to access a secondary Universal
Agent using the KUMP_DPCONSOLE_PORT variable to specify the alternate
port number.

Note: ASFS is the default data provider setting in the Universal Agent. It
consolidates four types of data providers (API, Socket, File, and Script) into
one package, which is started as a single thread to save resource usages.
This is the default data provider when you install the IBM Tivoli Universal
Agent.

Port Description Variable

161 Standard SNMP port (used when
running SNMP Universal Agent)

-

1919 Data Clearing House port KUMA_DCH_PORT

7500 Socket data provider listening port KUMP_DP_PORT

7575 Post data provider listening port KUMP_POST_DP_PORT

7600 API data provider listening port KUMP_API_DPAPI_PORT

7700-7710 Console ports (one for each DP
activated at startup)

-

162 SNMP trap monitoring listening port KUMP_SNMP_TRAP_PORT

320 Tivoli Management Services Warehouse and Reporting

5.1.3 Metafiles: Informing Universal Agent what to collect and
monitor

With applications called metafiles, we define the data structure to be monitored.
In other words, metadata is a data map that specifies data characteristics based
on application knowledge and monitoring requirements. It splits the input data
into fields called attributes, which can be viewed or warehoused into the Tivoli
Data Warehouse.

Using metafiles, the Universal Agent knows what to monitor on the systems and
hosts. After a metafile is defined, it is imported into the Universal Agent and used
by data providers that relay collected data to the Universal Agent. This data is
finally used by Tivoli Enterprise Monitoring Server and the Tivoli Data
Warehouse similar to data collected by specific IBM Tivoli Monitoring Agents.

Building a metafile application consists basically of defining the following items:

� Name of the application
� Name of each application attribute group
� Source or data sources in each group
� Names and characteristics of each attribute item
� Optional application help text, attribute group, and attributes

A metafile has the control statements (if present), which are listed in Table 5-4.

Table 5-4 Metafile control statement

Note: You can have many metafiles: One for each separate data source and
type.

Control statement Description

SNMP (For SNMP data providers only) Introduces the data definition for IBM Tivoli
Monitoring provided SNMP MIB applications; SNMP TEXT introduces the data
definition for user-defined SNMP applications

APPL Specifies the name that IBM Tivoli Monitoring uses for the application

NAME Defines the name of an attribute group, the type of data being collected, and the
period for which the data is valid

INTERNAL Provides for data redirection between attribute groups as a way to perform
additional processing

SOURCE Defines the location of the data you are collecting

RECORDSET (For file data providers only) Defines the set of records from which the data
provider extracts data

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 321

Example 5-1 shows a sample of a metafile that maps out log files. Each log file is
identified as a separate managed system. “TAIL” tells the Universal Agent that
you are going to read records from the end of the file as they are written.

Example 5-1 Metafile example

//appl MVS
//name SYSTEM E
//source file D:\UA_LOGS\PRA1.log TAIL ManagedSystemName=PRA1
//source file D:\UA_LOGS\PRB1.log TAIL ManagedSystemName=PRB1
//source file D:\UA_LOGS\PRC1.log TAIL ManagedSystemName=PRC1
//source file D:\UA_LOGS\PRE1.log TAIL ManagedSystemName=PRE1
//source file D:\UA_LOGS\PRF1.log TAIL ManagedSystemName=PRF1
//source file D:\UA_LOGS\PRG1.log TAIL ManagedSystemName=PRG1
//source file D:\UA_LOGS\PRX1.log TAIL ManagedSystemName=PRX1
//source file D:\UA_LOGS\PRZ1.log TAIL ManagedSystemName=PRZ1
//attributes ';'
System D 10
Application D 10
Date D 10
Time D 10
Message D 256
Threshold D 10
AutoAction D 20

CONFIRM (For socket data providers only) Specifies the requirements for data
acknowledgment

SQL (For ODBC data providers only) Defines the select statement or stored
procedure to use for collecting relational data.

SUMMARY Defines the requirements for gathering the frequency of data input during
monitoring

ATTRIBUTES Introduces the attribute definitions and specifies the attribute delimiters in the
data string; below the ATTRIBUTES control statement, list the individual
attribute definition statements

Control statement Description

322 Tivoli Management Services Warehouse and Reporting

Another point to take into account is the versioning of metafiles. Versioning
enables you to identify the level of metafiles and run different versions of
metafiles in different systems (for example, to monitor data for a new application
version that the old one does not have).

Metafile has both version and modification number. When it is imported for the
first time in the IBM Tivoli Universal Agent, it is assigned a version number 0 and
a modification number 0. When changes are made in the metafile and it is
refreshed on the IBM Tivoli Universal Agent, the version or modification number
is incremented by one, depending on the type of the modification.

Changes that do not affect the number of version or modification of the metafile
include:

� TTL value
� A change to the SOURCE statement
� Data type from P, S, or K to any of P, S, or K
� Delimiter specified in the ATTRIBUTE statement
� A change to the RECORDSET statement
� A change to the CONFIRM statement
� A change to an attribute FILTER parameters
� A change to the SQL statement

The following changes affect the modification number (minor changes):

� Adding a new attribute to the end of the attribute list for an attribute group
� Adding a new attribute group at the end of the metafile

Note: If you want to enable the metafile application for Summarization and
Pruning agent, you have to use the WHEN parameter with the //APPL
statement. The syntax is: //APPL <applname> [WHEN{<value>}]

If the WHEN parameter is omitted, the Summarization and Pruning agent
does not process data for this application when the data is placed in the
warehouse. The <value> parameter inside the {} brackets is a one-character
tag to indicate the warehouse enablement option, specifically, the minimum
level of data summarization found in the application source data. The valid
values are:

� R Raw or sub-hourly
� H Hourly
� D Daily
� W Weekly
� M Monthly
� Q Quarterly
� Y Yearly

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 323

� Adding, removing, or changing help text
� Atomizing an existing attribute
� Adding, removing, or changing Scale or Precision values
� Adding, removing, or changing Caption values
� Adding, removing, or changing Warehouse or Aggregation parameters
� Adding, removing, or changing HistoricalTimestamp or PrimaryKey options

The following changes increment the version number (major changes):

� Renaming or deleting an existing attribute

� Changing the type of an attribute

� Changing the length of an attribute

� Changing the name of an attribute group

� Adding a new attribute anywhere other than the end of a list of existing
attributes

� Changing the order of attributes

� Changing a data type from E to P, S, or K

� Changing a data type from P, S, or K to E

� Adding a new attribute group anywhere other than the end of a metafile

5.1.4 Manipulating data with Tivoli Enterprise Portal
The data that is collected and monitored by the Universal Agent is used in the
same way as the data collected by IBM Tivoli Monitoring agents in the Tivoli
Enterprise Portal.

Tivoli Enterprise Portal objects are named managed systems and the name of
each managed system identifies the collected data source, the application that is
monitored, and the metafile version. Tivoli Enterprise Portal can configure
workspaces to visualize collected data by the Universal Agent. Each attribute
group defined in a metafile has its own workspace. It can also be customized to
show only wanted data.

The attribute groups DPLOG and ACTION from each data provider are used for
the Universal Agent self-monitoring, more specifically data providers. The
DPLOG attribute shows the status from a data provider, and the ACTION
attribute gives information about the execution of a situation and policies.
Figure 5-2 shows the attribute group DPLOG in Tivoli Enterprise Portal.

324 Tivoli Management Services Warehouse and Reporting

Figure 5-2 Attribute group DPLOG in Tivoli Enterprise Portal

In the Tivoli Enterprise Portal, we visualize the data that is collected and stored
by the Universal Agent with the historical data collection functionality.

The historical data collection enables you to:

� Specify the attribute group or groups for which data is collected

� Specify the interval at which data is collected

� Specify the interval at which data is warehoused (if warehouse is being used)

� Determine the source where collected data is stored, in the agent or Tivoli
Enterprise Monitoring Server

Basically, Tivoli Enterprise Portal enables you to:

� Visualize stored data or data in real time

� Define situations with defined thresholds for potential availability or
performance problems

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 325

� Define automatic responses for events and levels of alerts from monitored
systems

� Self-monitoring of data providers

5.1.5 Use cases for the Universal Agent
The Universal Agent is a good choice, for example, when systems and
applications cannot be monitored by existing monitoring solutions, when you
want control over monitored data, when the solution requires automation, and
when the application to be monitored frequently changes (new applications or
operational systems releases).

Consider the following tips before the Universal Agent deployment:

� Choose the right data provider for your application monitoring. For example,
you can use the ODBC data provider if you want to monitor a relational
database, file data provider if you want to monitor log files from an
application, and so on.

� Prepare the data source.

� Define an application (metafile) to be used by the data provider that satisfies
the monitoring requirements.

� Enable historical collection for the created data source and version.

Some real-world Universal Agent usage examples are:

� Monitoring MQ Series Client Channels
� Monitoring DEC OpenVMS
� Integrating Cabletron Spectrum
� Monitoring remote RF devices
� Monitoring POS devices
� Monitoring proprietary applications

5.1.6 Universal Agent deployment steps

Deploying a Universal Agent solution consists of the following steps:

1. Collect all the required information about the solution.

2. Select the data provider and start the Universal Agent with selected data
providers.

3. Create the metafiles describing the Universal Agent application.

4. Load the metafile and send the data.

5. Use standard IBM Tivoli Monitoring features to finalize the solution.

326 Tivoli Management Services Warehouse and Reporting

The first step is especially important. Here are some questions that might help
you determine to collect all the required information about the solution:

� Who needs the information?
� What information is needed?
� Where is the data located?
� When and how often is the data collected?
� Why is it required? Does it make good business sense to collect it?
� How? What methodology will be used to collect the data?
� What is the data used for after it is integrated?

After obtaining all of this information, determine the correct data provider type to
use. This decision is based on the information that you collected in the first step.

5.2 Warehousing Data using IBM Tivoli Monitoring 6.1
Universal Agent (script provider)

In this section, we provide a practical example of how to configure the Tivoli
Monitoring 6.1 Universal Agent. In doing so, we describe how data can be
warehoused to the Tivoli Data Warehouse and viewed using the Tivoli Enterprise
Portal client.

5.2.1 Configuring the Tivoli Universal Agent

The example we explore is a Universal Agent that is used to gather data disk
metrics from an AIX system. To configure this agent, perform the following steps:

1. Install and configure Universal Agent. This is covered in detail in IBM Tivoli
Monitoring Installation and Setup Guide, GC32-9407, and IBM Tivoli
Monitoring Universal Agent User's Guide, SC32-9459. In our lab
environment, we installed the agent on the AIX system (belfast). We installed
the agent under (/opt/IBM/ITM/).

2. After you install the agent, create the mdl file for the agent. Create this file and
place it in the (/opt/IBM/ITM/bin) directory. An example of the mdl file that we
used is shown Example 5-2.

Example 5-2 AIX disk metric .mdl example

/ITM61/bin/disk.mdl
//APPL DiskData
//Name DiskUsageStats S 1440 AddTimeStamp
//Source script /usr/bin/sh /ITM61/bin/disk.sh Interval=60
//Attributes
HostName (GetEnvValue = HOSTNAME)

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 327

Script (GetEnvValue = PROBE)
FileSystem D 120
BlockSize C 2147483647
SpaceAvailable C 2147483647
Perc_Used C 2147483647
Inodes_Used C 2147483647
Perc_Inodes_Used C 2147483647
MountPoint D 120

3. Create a script that provides the required information to the Universal Agent.
In our case, it was a simple shell script that was created under
/opt/IBM/ITM/bin and was referenced in the .mdl example shown in
Example 5-2. An example of the script that we used is shown in Example 5-3.

Example 5-3 AIX disk metrics query disk.sh script example

/usr/bin/df -k |grep -v Filesystem

4. After you create the .mdl file and data provider, register the .mdl file with the
Universal Agent so that it knows the format of the data it will be receiving and
the script that is used to provide this data. To do this, run the commands
shown in Example 5-4.

Example 5-4 Commands used to import .mdl file on UNIX and Linux

export CANDLEHOME=/ITM61
cd $CANDLEHOME/bin

./um_console
KUMPS002I Enter console command <Application name or Metafile name or
file name>
import /ITM61/bin/disk.mdl
KUMPS001I Console input accepted.
KUMPS020I Import successfully completed for /ITM61/bin/disk.mdl

5. After you complete this, press Enter to exit.

6. Restart the Universal Agent.

328 Tivoli Management Services Warehouse and Reporting

5.2.2 Viewing the data in the Tivoli Enterprise Portal

To view the data that is being collected by the newly configured Universal Agent,
perform the following steps:

1. Log on to either your TEP desktop client or your TEP Web client.

2. After you log on, you notice that a new agent, which you can view by selecting
Enterprise → UNIX Systems → Hostname → Universal Agent. This is
shown in Figure 5-3.

Figure 5-3 AIX disk Universal Agent in the TEP

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 329

3. When you click this Universal Agent, it shows all the data that is being
collected by the script, running under the Universal Agent. See Figure 5-4.

Figure 5-4 DISKDATA data view in TEP

330 Tivoli Management Services Warehouse and Reporting

5.2.3 Warehousing the Universal Agent data

To warehouse the data that is being collected by the configured Universal Agent,
perform the following steps:

1. In the tool bar, select the History Configuration button, as shown in
Figure 5-5.

Figure 5-5 TEP Historical Configuration tab

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 331

2. The History Collection Configuration window opens. In the Select a product
drop-down list, select the name (//APPL DiskData), which was given in the
mdl file to the Universal Agent. This was DISKDATA in our example. See
Figure 5-6.

Figure 5-6 DISKDATA history collection configuration window

332 Tivoli Management Services Warehouse and Reporting

3. In the Select Attribute Groups list, click the group name. This enables the
Configuration Controls options. You can specify the Collection Interval. Four
options are available. The data for metrics presented under the
DiskUsageStats attribute group can be collected every 5, 15, 30 or every 60
minutes, as shown in Figure 5-7.

Figure 5-7 DISKDATA collection interval configuration window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 333

4. You can select the collection location. Two options are available. Historical
data can be collected at either the Tivoli Enterprise Monitoring Agent (agent)
or at the Tivoli Enterprise Monitoring Server (management server, hub or
remote). We recommend that you specify to collect data at the Tivoli
Enterprise Monitoring Agent location, as shown in Figure 5-8.

Figure 5-8 DISKDATA collection location configuration window

334 Tivoli Management Services Warehouse and Reporting

5. Select the warehouse interval. Two options are available. Historical data can
be uploaded to Warehouse using the Warehouse Proxy agent ever hour or
every 24 hours, as shown in Figure 5-9.

Figure 5-9 DISKDATA warehouse interval configuration window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 335

6. After you select all the options under the configuration controls, select the
Configure Groups button to save these changes. You see the saved options
in the updated panel, as shown in Figure 5-10. You can see that the options
are set to collect data every 5 minutes, which will be stored at the Tivoli
Enterprise Monitoring Agent and written to the warehouse every hour.

Figure 5-10 DISKDATA configuration window

7. To start the data collection, click the Start Collection button to enable
historical collection for the DiskUsageStats Attribute Group.

Note: Configuring the collection options for an attribute group does not
start collection for that attribute group. You have to start the collection
manually. We describe how to do this in more detail in the following steps.

336 Tivoli Management Services Warehouse and Reporting

The Collection field in the Select Attribute Groups section shows the status of
the agent as Started, as shown in Figure 5-11. That is, the agent has started
collection.

Figure 5-11 DISKDATA started status in configuration window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 337

The history collection has now started. You can confirm this by checking the
Universal Agents view, which shows a date/time icon, as shown in
Figure 5-12.

Figure 5-12 TEP DISKDATA date/time icon

338 Tivoli Management Services Warehouse and Reporting

5.2.4 Creating graphical views for historical data

After you configure the historical data collection, you can create different views
from this data, such as a bar chart. Figure 5-13 shows an example of a
customized view.

Figure 5-13 Customized TEP workspaces example

To create a graphical view from table data format, perform the following steps:

1. From the list of icons in the menu, select Bar Chart, drag the icon, and drop it
on the table view, as shown in Figure 5-14.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 339

Figure 5-14 Bar chart selection icon

2. The Select attribute window opens. In the Attribute item field, select Perc
Used metric and click OK, as shown in Figure 5-15.

Figure 5-15 Bar chart attribute selection window

340 Tivoli Management Services Warehouse and Reporting

3. A view with the bar charts opens with the Perc Used data, as shown in
Figure 5-16. You can customize this view. To do this, right-click the view and
select Properties.

Figure 5-16 Bar chart data view

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 341

A window opens, as shown in Figure 5-17.

Figure 5-17 Bar chart properties customization window

342 Tivoli Management Services Warehouse and Reporting

4. Select the Style tab and enter the text AIX UNIX System Disk Usage Data.
Select the Show check box, click Apply and OK, as shown in Figure 5-18.

Figure 5-18 Bar chart style parameters properties window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 343

5. The bar chart view opens showing the text that you entered, as shown in
Figure 5-19. To view the historical data, click the Date/Time icon.

Figure 5-19 Stylized bar chart workspace

344 Tivoli Management Services Warehouse and Reporting

6. The Select the Time Span window opens. Select the Last option, and specify
2 to show data for the last two days, as shown in Figure 5-20. This makes a
direct query in the warehouse database and gets the requested data.

Figure 5-20 Historical time span view configuration window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 345

7. The view now retrieves all the rows for the last two days, as shown in
Figure 5-21. You can customize this by dragging and dropping the graphical
icons to view the historical data.

Figure 5-21 Two-day historical data view

346 Tivoli Management Services Warehouse and Reporting

This opens the plot graph shown in Figure 5-22.

Figure 5-22 Historical data plot graph view

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 347

5.3 Warehousing data using IBM Tivoli Monitoring 6.1
Universal Agent (ODBC provider)

In this section, we provide another practical example of how to configure the
Tivoli Monitoring 6.1 Universal Agent. In doing so, we describe how data can be
warehoused to the Tivoli Data Warehouse and viewed using the Tivoli Enterprise
Portal client.

This solution monitors Tivoli Storage Manager by providing reports similar to the
Daily Reports provided by Tivoli Storage Manager. The solution uses the Tivoli
Storage Manager ODBC data provider to extract useful metrics about the
working condition of your Tivoli Storage Manager server. This provides you with
useful data about the performance and availability characteristics of your Tivoli
Storage Manager server including:

� Client schedules
� Administrative schedules
� Disk pool information
� Tape pool information
� Data movement (restore/backup)
� User and administrator information

You can use the collected information to perform trending analysis on your Tivoli
Storage Manager server.

5.3.1 Configuring the Tivoli Universal Agent

The example that we provide is a Universal Agent that is used to gather data
from a Tivoli Storage Manager database residing on a z/OS system. To configure
this agent, perform the following steps:

1. Install and configure the Universal Agent. This is covered in detail in IBM
Tivoli Monitoring Installation and Setup Guide, GC32-9407, and IBM Tivoli
Monitoring Universal Agent User's Guide, SC32-9459. In our lab
environment, we installed the agent on a Windows system (toronto) because
of the dependency on ODBC. The ODBC data provider is only supported on a
Windows environment. The agent was installed under (c:\IBM\ITM).

2. After you install the Universal Agent, configure it so that it has to use the
ODBC data provider. To do this, edit the c:\ibm\itm\tmaitm6\kumenv file.
Change the tag KUMA_STARTUP_DP=ASFS to read
KUMA_STARTUP_DP=ODBC. After you do this, save the ENV file and
restart the Universal Agent.

348 Tivoli Management Services Warehouse and Reporting

3. The ODBC data provider requires an ODBC data source. In our case, we
installed and configured a data source using the Tivoli Storage Manager
ODBC drivers located on the Tivoli Storage Manager client setup disks. For
detailed information about how to install and configure a Tivoli Storage
Manager ODBC connection, see:

http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp?top
ic=/com.ibm.itsmreadme.doc/WINDOWS/ODBC/README_odbc_enu.htm

4. After you install, configure, and test the ODBC data source, create the mdl file
for the agent. The ODBC mdl file is heavily dependent on knowing the
database schema of the database that you are querying, because direct SQL
statements are used. The attribute groups are also mapped to table names,
therefore it is essential to know the schema that you want to use this provider
on. Create the file and place it in the (c:\ibm\itm\tmaitm6\metafiles) directory.
An example of the mdl file that we used is shown in Appendix A, “Example
mdl file for the Tivoli Storage Manager Universal Agent scenario” on
page 491.

Important: It is essential to modify the .mdl file and parameters to suit your
environment. In our case, we used a system DSN named TSM ODBC as
the data source, and the user name and password we used for querying
the Tivoli Storage Manager server were both admin.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 349

http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp?topic=/com.ibm.itsmreadme.doc/WINDOWS/ODBC/README_odbc_enu.htm

Note: It is possible to automatically build a metafile for the database that
you are querying. To do this, issue the GENERATE command.

The GENERATE command automatically builds a complete and
syntactically correct ODBC metafile when given a data source name as
input. This command supports full generation of all tables that are defined
to the specified data source. You can also limit the tables that are
generated by selecting user tables, system tables, views, or some
combination of the three, and specify a beginning string of characters to
pattern match against any of the three table types.

The GENERATE command does not support metafile creation for stored
procedures. You can start this command even when the IBM Tivoli
Universal Agent is not running. GENERATE is only accessible on Windows
operating systems and only through the kumpcon console interface. The
syntax is as follows:

<ITMInstalldir>\tmaitm6\KUMPCON GENERATE dataSourceName
user=userid pswd=password

In this syntax:

� <dataSourceName> indicates the specific name of the configured data
source that is used to create the ODBC metafile. This parameter is
required. If the data source contains any embedded blanks, it must be
surrounded with single quotation marks.

� <userid> is the user ID that connects to the ODBC data source. If no
user and password combination is required for this particular data
source, then you can omit the user= parameter from the GENERATE
command.

� <password> is the password that is associated with the user ID
connecting to the ODBC data source. If specified, the user and pswd
values are inserted into every //SOURCE statement in the generated
ODBC metafile.

In our case, we used the following command to generate the .mdl file:

c:\ibm\itm\tmaitm6\kumpcon GENERATE TSMODBC user=admin pswd=admin

350 Tivoli Management Services Warehouse and Reporting

5. After you create the .mdl file, register it with the Universal Agent so that it knows
the format of the data that it will be receive and the SQL statements that are
used to provide this data. To do this, run the commands shown in Example 5-5.

Example 5-5 Commands used to import .mdl file on Windows

cd\ibm\itm\tmaitm6

kumpcon validate tsm.mdl
KUMPS001I Console input accepted.
KUMPV025I Processing input metafile
C:\IBM\ITM\TMAITM6\metafiles\tsm.mdl
KUMPV026I Processing record 0001 -> //APPL TSM
KUMPV149I Note: APPL names starting with letters N-Z are designated for
customer UA solutions.
KUMPV026I Processing record 0002 -> //NAME ACTLOG S 300 @Server
activity log
KUMPV026I Processing record 0003 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0004 -> //SQL Select * from ACTLOG
KUMPV026I Processing record 0005 -> //ATTRIBUTES
KUMPV026I Processing record 0006 -> DATE_TIME D 28 @Date/Time
KUMPV026I Processing record 0007 -> MSGNO N 8 @Message number
KUMPV026I Processing record 0008 -> SEVERITY D 4 @Message severity
KUMPV026I Processing record 0009 -> MESSAGE D 256 @Message
KUMPV026I Processing record 0010 -> ORIGINATOR D 20 @Originator
KUMPV026I Processing record 0011 -> NODENAME D 64 @Node Name
KUMPV026I Processing record 0012 -> OWNERNAME D 64 @Owner Name
KUMPV026I Processing record 0013 -> SCHEDNAME D 32 @Schedule Name
KUMPV026I Processing record 0014 -> DOMAINNAME D 32 @Policy Domain
Name
KUMPV026I Processing record 0015 -> SESSID N 8 @Sess Number
KUMPV026I Processing record 0016 -> SERVERNAME D 64 @Server Name
KUMPV026I Processing record 0017 -> SESSION N 8 @SESSION
KUMPV026I Processing record 0018 -> PROCESS N 8 @PROCESS
KUMPV026I Processing record 0019 -> //NAME ADMINS K 300 @Server
administrators
KUMPV026I Processing record 0020 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0021 -> //SQL Select * from ADMINS
KUMPV026I Processing record 0022 -> //ATTRIBUTES
KUMPV026I Processing record 0023 -> ADMIN_NAME D 64 KEY ATOMIC
@Administrator Name
KUMPV026I Processing record 0024 -> LASTACC_TIME D 28 @Last
Access Date/Time

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 351

KUMPV026I Processing record 0025 -> PWSET_TIME D 28 @Password
Set Date/Time
KUMPV026I Processing record 0026 -> CONTACT D 128 @Contact
KUMPV026I Processing record 0027 -> LOCKED D 12 @Locked?
KUMPV026I Processing record 0028 -> INVALID_PW_COUNT C 999999
@Invalid Sign-on Count
KUMPV026I Processing record 0029 -> SYSTEM_PRIV D 80 @System
Privilege
KUMPV026I Processing record 0030 -> POLICY_PRIV D 100 @Policy
Privilege
KUMPV026I Processing record 0031 -> STORAGE_PRIV D 100 @Storage
Privilege
KUMPV026I Processing record 0032 -> ANALYST_PRIV D 80 @Analyst
Privilege
KUMPV026I Processing record 0033 -> OPERATOR_PRIV D 80 @Operator
Privilege
KUMPV026I Processing record 0034 -> CLIENT_ACCESS D 256 @Client
Access Privilege
KUMPV026I Processing record 0035 -> CLIENT_OWNER D 256 @Client
Owner Privilege
KUMPV026I Processing record 0036 -> REG_TIME D 28
@Registration Date/Time
KUMPV026I Processing record 0037 -> REG_ADMIN D 64
@Registering Administrator
KUMPV026I Processing record 0038 -> PROFILE D 256 @Managing
profile
KUMPV026I Processing record 0039 -> PASSEXP N 8 @Password
Expiration Period
KUMPV026I Processing record 0040 -> //NAME ADMIN_SCHEDULES K 300
@Administrative command schedules
KUMPV026I Processing record 0041 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0042 -> //SQL Select * from ADMIN_SCHEDULES
KUMPV026I Processing record 0043 -> //ATTRIBUTES
KUMPV026I Processing record 0044 -> SCHEDULE_NAME D 32 KEY ATOMIC
@Schedule Name
KUMPV026I Processing record 0045 -> DESCRIPTION D 256 @Description
KUMPV026I Processing record 0046 -> COMMAND D 256 @Command
KUMPV026I Processing record 0047 -> PRIORITY C 999999 @Priority
KUMPV026I Processing record 0048 -> STARTDATE D 12 @Start date
KUMPV026I Processing record 0049 -> STARTTIME D 8 @Start time
KUMPV026I Processing record 0050 -> DURATION N 8 @Duration
KUMPV026I Processing record 0051 -> DURUNITS D 20 @Duration
units
KUMPV026I Processing record 0052 -> PERIOD N 8 @Period

352 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0053 -> PERUNITS D 20 @Period units
KUMPV026I Processing record 0054 -> DAYOFWEEK D 20 @Day of Week
KUMPV026I Processing record 0055 -> EXPIRATION D 12 @Expiration
KUMPV026I Processing record 0056 -> ACTIVE D 12 @Active?
KUMPV026I Processing record 0057 -> CHG_TIME D 28 @Last Update
Date/Time
KUMPV026I Processing record 0058 -> CHG_ADMIN D 32 @Last Update
by (administrator)
KUMPV026I Processing record 0059 -> PROFILE D 256 @Managing
profile
KUMPV026I Processing record 0060 -> SCHED_STYLE D 12 @Schedule
Style
KUMPV026I Processing record 0061 -> ENH_MONTH D 52 @Month
KUMPV026I Processing record 0062 -> DAYOFMONTH D 60 @Day of Month
KUMPV026I Processing record 0063 -> WEEKOFMONTH D 52 @Week of
Month
KUMPV026I Processing record 0064 -> //NAME ARCHIVES S 300 @Client
archive files
KUMPV026I Processing record 0065 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0066 -> //SQL Select * from ARCHIVES
KUMPV026I Processing record 0067 -> //ATTRIBUTES
KUMPV026I Processing record 0068 -> NODE_NAME D 64 @Node Name
KUMPV026I Processing record 0069 -> FILESPACE_NAME D 256 @Filespace
Name
KUMPV026I Processing record 0070 -> FILESPACE_ID N 28 @FSID
KUMPV026I Processing record 0071 -> TYPE D 16 @Object type
KUMPV026I Processing record 0072 -> HL_NAME D 256 @Client
high-level name
KUMPV026I Processing record 0073 -> LL_NAME D 256 @Client
low-level name
KUMPV026I Processing record 0074 -> OBJECT_ID N 20 @Server
object ID for the client object
KUMPV026I Processing record 0075 -> ARCHIVE_DATE D 28 @Date/time
that the object was archived
KUMPV026I Processing record 0076 -> OWNER D 64 @Client
object owner
KUMPV026I Processing record 0077 -> DESCRIPTION D 256
@Description
KUMPV026I Processing record 0078 -> CLASS_NAME D 32 @Mgmt Class
Name
KUMPV026I Processing record 0079 -> //NAME AR_COPYGROUPS S 300
@Management class archive copy groups
KUMPV026I Processing record 0080 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 353

KUMPV026I Processing record 0081 -> //SQL Select * from AR_COPYGROUPS
KUMPV026I Processing record 0082 -> //ATTRIBUTES
KUMPV026I Processing record 0083 -> DOMAIN_NAME D 32 @Policy
Domain Name
KUMPV026I Processing record 0084 -> SET_NAME D 32 @Policy Set
Name
KUMPV026I Processing record 0085 -> CLASS_NAME D 32 @Mgmt Class
Name
KUMPV026I Processing record 0086 -> COPYGROUP_NAME D 32 @Copy Group
Name
KUMPV026I Processing record 0087 -> RETVER D 8 @Retain
Version
KUMPV026I Processing record 0088 -> SERIALIZATION D 32 @Copy
Serialization
KUMPV026I Processing record 0089 -> DESTINATION D 32 @Copy
Destination
KUMPV026I Processing record 0090 -> CHG_TIME D 28 @Last Update
Date/Time
KUMPV026I Processing record 0091 -> CHG_ADMIN D 32 @Last Update
by (administrator)
KUMPV026I Processing record 0092 -> PROFILE D 256 @Managing
profile
KUMPV026I Processing record 0093 -> RETINIT D 8 @Retention
Initiation
KUMPV026I Processing record 0094 -> RETMIN N 8 @Retain
Minimum Days
KUMPV026I Processing record 0095 -> //NAME ASSOCIATIONS S 300 @Client
schedule associations
KUMPV026I Processing record 0096 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0097 -> //SQL Select * from ASSOCIATIONS
KUMPV026I Processing record 0098 -> //ATTRIBUTES
KUMPV026I Processing record 0099 -> DOMAIN_NAME D 32 @Policy
Domain Name
KUMPV026I Processing record 0100 -> SCHEDULE_NAME D 32 @Schedule
Name
KUMPV026I Processing record 0101 -> NODE_NAME D 64 @Associated
Nodes
KUMPV026I Processing record 0102 -> CHG_TIME D 28 @Last Update
Date/Time
KUMPV026I Processing record 0103 -> CHG_ADMIN D 32 @Last Update
by (administrator)
KUMPV026I Processing record 0104 -> //NAME AUDITOCC K 300 @Server
audit occupancy results

354 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0105 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0106 -> //SQL Select * from AUDITOCC
KUMPV026I Processing record 0107 -> //ATTRIBUTES
KUMPV026I Processing record 0108 -> NODE_NAME D 64 KEY ATOMIC
@Node Name
KUMPV026I Processing record 0109 -> BACKUP_MB N 8 @Backup
Storage Used (MB)
KUMPV026I Processing record 0110 -> BACKUP_COPY_MB N 8 @Backup
Storage Used (MB)
KUMPV026I Processing record 0111 -> ARCHIVE_MB N 8 @Archive
Storage Used (MB)
KUMPV026I Processing record 0112 -> ARCHIVE_COPY_MB N 8 @Archive
Storage Used (MB)
KUMPV026I Processing record 0113 -> SPACEMG_MB N 8
@Space-Managed Storage Used (MB)
KUMPV026I Processing record 0114 -> SPACEMG_COPY_MB N 8
@Space-Managed Storage Used (MB)
KUMPV026I Processing record 0115 -> TOTAL_MB N 8 @Total
Storage Used (MB)
KUMPV026I Processing record 0116 -> //NAME BACKUPS S 300 @Client
backup files
KUMPV026I Processing record 0117 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0118 -> //SQL Select * from BACKUPS
KUMPV026I Processing record 0119 -> //ATTRIBUTES
KUMPV026I Processing record 0120 -> NODE_NAME D 64 @Node Name
KUMPV026I Processing record 0121 -> FILESPACE_NAME D 256 @Filespace
Name
KUMPV026I Processing record 0122 -> FILESPACE_ID N 28 @FSID
KUMPV026I Processing record 0123 -> STATE D 16 @File state
(active, inactive)
KUMPV026I Processing record 0124 -> TYPE D 16 @Object
type
KUMPV026I Processing record 0125 -> HL_NAME D 256 @Client
high-level name
KUMPV026I Processing record 0126 -> LL_NAME D 256 @Client
low-level name
KUMPV026I Processing record 0127 -> OBJECT_ID N 20 @Server
object ID for the client object
KUMPV026I Processing record 0128 -> BACKUP_DATE D 28 @Date/time
that the object was backed up
KUMPV026I Processing record 0129 -> DEACTIVATE_DATE D 28 @Date/time
that the object was deactivated

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 355

KUMPV026I Processing record 0130 -> OWNER D 64 @Client
object owner
KUMPV026I Processing record 0131 -> CLASS_NAME D 32 @Mgmt Class
Name
KUMPV026I Processing record 0132 -> //NAME BACKUPSETS S 300 @Backup
Set
KUMPV026I Processing record 0133 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0134 -> //SQL Select * from BACKUPSETS
KUMPV026I Processing record 0135 -> //ATTRIBUTES
KUMPV026I Processing record 0136 -> NODE_NAME D 64 @Node Name
KUMPV026I Processing record 0137 -> BACKUPSET_NAME D 256 @Backup Set
Name
KUMPV026I Processing record 0138 -> OBJECT_ID N 20 @Server
object ID for the client object
KUMPV026I Processing record 0139 -> DATE_TIME D 28 @Date/Time
KUMPV026I Processing record 0140 -> RETENTION D 8 @Retention
Period
KUMPV026I Processing record 0141 -> DESCRIPTION D 256
@Description
KUMPV026I Processing record 0142 -> DEVCLASS D 32 @Device
Class Name
KUMPV026I Processing record 0143 -> //NAME BU_COPYGROUPS S 300
@Management class backup copy groups
KUMPV026I Processing record 0144 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0145 -> //SQL Select * from BU_COPYGROUPS
KUMPV026I Processing record 0146 -> //ATTRIBUTES
KUMPV026I Processing record 0147 -> DOMAIN_NAME D 32 @Policy
Domain Name
KUMPV026I Processing record 0148 -> SET_NAME D 32 @Policy Set
Name
KUMPV026I Processing record 0149 -> CLASS_NAME D 32 @Mgmt Class
Name
KUMPV026I Processing record 0150 -> COPYGROUP_NAME D 32 @Copy Group
Name
KUMPV026I Processing record 0151 -> VEREXISTS D 8 @Versions
Data Exists
KUMPV026I Processing record 0152 -> VERDELETED D 8 @Versions
Data Deleted
KUMPV026I Processing record 0153 -> RETEXTRA D 8 @Retain
Extra Versions
KUMPV026I Processing record 0154 -> RETONLY D 8 @Retain Only
Version
KUMPV026I Processing record 0155 -> MODE D 32 @Copy Mode

356 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0156 -> SERIALIZATION D 32 @Copy
Serialization
KUMPV026I Processing record 0157 -> FREQUENCY C 999999 @Copy
Frequency
KUMPV026I Processing record 0158 -> DESTINATION D 32 @Copy
Destination
KUMPV026I Processing record 0159 -> TOC_DESTINATION D 32 @Table of
Contents (TOC) Destination
KUMPV026I Processing record 0160 -> CHG_TIME D 28 @Last
Update Date/Time
KUMPV026I Processing record 0161 -> CHG_ADMIN D 32 @Last
Update by (administrator)
KUMPV026I Processing record 0162 -> PROFILE D 256 @Managing
profile
KUMPV026I Processing record 0163 -> //NAME CLIENTOPTS S 300 @Client
Options
KUMPV026I Processing record 0164 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0165 -> //SQL Select * from CLIENTOPTS
KUMPV026I Processing record 0166 -> //ATTRIBUTES
KUMPV026I Processing record 0167 -> OPTIONSET_NAME D 68 @Optionset
KUMPV026I Processing record 0168 -> OPTION_NAME D 68 @Option
KUMPV026I Processing record 0169 -> SEQNUMBER N 8 @Sequence
number
KUMPV026I Processing record 0170 -> OPTION_VALUE D 256 @Option
Value
KUMPV026I Processing record 0171 -> FORCE D 4 @Use Option
Set Value (FORCE)
KUMPV026I Processing record 0172 -> OBSOLETE D 12 @Obsolete
KUMPV026I Processing record 0173 -> WHEN_OBSOLETE D 12 @When
Obsolete?
KUMPV026I Processing record 0174 -> //NAME CLIENT_SCHEDULES S 300
@Client schedules
KUMPV026I Processing record 0175 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0176 -> //SQL Select * from
CLIENT_SCHEDULES
KUMPV026I Processing record 0177 -> //ATTRIBUTES
KUMPV026I Processing record 0178 -> DOMAIN_NAME D 32 @Policy
Domain Name
KUMPV026I Processing record 0179 -> SCHEDULE_NAME D 32 @Schedule
Name
KUMPV026I Processing record 0180 -> DESCRIPTION D 256 @Description
KUMPV026I Processing record 0181 -> ACTION D 20 @Action
KUMPV026I Processing record 0182 -> OPTIONS D 256 @Options

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 357

KUMPV026I Processing record 0183 -> OBJECTS D 256 @Objects
KUMPV026I Processing record 0184 -> PRIORITY C 999999 @Priority
KUMPV026I Processing record 0185 -> STARTDATE D 12 @Start date
KUMPV026I Processing record 0186 -> STARTTIME D 8 @Start time
KUMPV026I Processing record 0187 -> DURATION N 8 @Duration
KUMPV026I Processing record 0188 -> DURUNITS D 20 @Duration
units
KUMPV026I Processing record 0189 -> PERIOD N 8 @Period
KUMPV026I Processing record 0190 -> PERUNITS D 20 @Period units
KUMPV026I Processing record 0191 -> DAYOFWEEK D 20 @Day of Week
KUMPV026I Processing record 0192 -> EXPIRATION D 12 @Expiration
KUMPV026I Processing record 0193 -> CHG_TIME D 28 @Last Update
Date/Time
KUMPV026I Processing record 0194 -> CHG_ADMIN D 32 @Last Update
by (administrator)
KUMPV026I Processing record 0195 -> PROFILE D 256 @Managing
profile
KUMPV026I Processing record 0196 -> SCHED_STYLE D 12 @Schedule
Style
KUMPV026I Processing record 0197 -> ENH_MONTH D 52 @Month
KUMPV026I Processing record 0198 -> DAYOFMONTH D 60 @Day of Month
KUMPV026I Processing record 0199 -> WEEKOFMONTH D 52 @Week of
Month
KUMPV026I Processing record 0200 -> //NAME CLOPTSETS K 300 @Client
Option Sets
KUMPV026I Processing record 0201 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0202 -> //SQL Select * from CLOPTSETS
KUMPV026I Processing record 0203 -> //ATTRIBUTES
KUMPV026I Processing record 0204 -> OPTIONSET_NAME D 68 KEY ATOMIC
@Optionset
KUMPV026I Processing record 0205 -> DESCRIPTION D 256
@Description
KUMPV026I Processing record 0206 -> LAST_UPDATE_BY D 68 @Last Update
by (administrator)
KUMPV026I Processing record 0207 -> PROFILE D 256 @Managing
profile
KUMPV026I Processing record 0208 -> //NAME COLLOCGROUP S 300
@Collocation groups
KUMPV026I Processing record 0209 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0210 -> //SQL Select * from COLLOCGROUP
KUMPV026I Processing record 0211 -> //ATTRIBUTES
KUMPV026I Processing record 0212 -> COLLOCGROUP_NAME D 32
@Collocation Group Name

358 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0213 -> DESCRIPTION D 256
@Description
KUMPV026I Processing record 0214 -> CHG_TIME D 28 @Last
Update Date/Time
KUMPV026I Processing record 0215 -> CHG_ADMIN D 32 @Last
Update by (administrator)
KUMPV026I Processing record 0216 -> NODE_NAME D 64 @Node Name
KUMPV026I Processing record 0217 -> //NAME CONTENTS S 300 @Storage
pool volume contents
KUMPV026I Processing record 0218 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0219 -> //SQL Select * from CONTENTS
KUMPV026I Processing record 0220 -> //ATTRIBUTES
KUMPV026I Processing record 0221 -> VOLUME_NAME D 256 @Volume
Name
KUMPV026I Processing record 0222 -> NODE_NAME D 64 @Node
Name
KUMPV026I Processing record 0223 -> TYPE D 20 @Type
KUMPV026I Processing record 0224 -> FILESPACE_NAME D 64
@Filespace Name
KUMPV026I Processing record 0225 -> FILE_NAME D 256
@Client's Name for File
KUMPV026I Processing record 0226 -> AGGREGATED D 20
@Aggregated?
KUMPV026I Processing record 0227 -> FILE_SIZE N 20 @Stored
Size
KUMPV026I Processing record 0228 -> SEGMENT D 20 @Segment
Number
KUMPV026I Processing record 0229 -> CACHED D 20 @Cached
Copy?
KUMPV026I Processing record 0230 -> FILESPACE_ID N 8 @FSID
KUMPV026I Processing record 0231 -> FILESPACE_HEXNAME D 64
@Hexadecimal Filespace Name
KUMPV026I Processing record 0232 -> FILE_HEXNAME D 256
@Hexadecimal Client's Name for File
KUMPV026I Processing record 0233 -> //NAME DATAMOVERS K 300 @Data
Movers
KUMPV026I Processing record 0234 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0235 -> //SQL Select * from DATAMOVERS
KUMPV026I Processing record 0236 -> //ATTRIBUTES
KUMPV026I Processing record 0237 -> MOVER_NAME D 64 KEY ATOMIC
@Data Mover Name
KUMPV026I Processing record 0238 -> TYPE D 16 @Data Mover
Type

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 359

KUMPV026I Processing record 0239 -> HL_ADDRESS D 256 @IP Address
KUMPV026I Processing record 0240 -> LL_ADDRESS D 256 @TCP/IP
Port Number
KUMPV026I Processing record 0241 -> USER_NAME D 64 @User Name
KUMPV026I Processing record 0242 -> WWN D 16 @WWN
KUMPV026I Processing record 0243 -> SERIAL D 64 @Serial
Number
KUMPV026I Processing record 0244 -> COPYTHREADS N 8 @Copy Threads
KUMPV026I Processing record 0245 -> DATA_FORMAT D 32 @Storage
Pool Data Format
KUMPV026I Processing record 0246 -> ONLINE D 40 @On-Line
KUMPV026I Processing record 0247 -> LAST_UPDATE_BY D 64 @Last Update
by (administrator)
KUMPV026I Processing record 0248 -> LAST_UPDATE D 28 @Last Update
Date/Time
KUMPV026I Processing record 0249 -> //NAME DB S 300 @Server database
information
KUMPV026I Processing record 0250 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0251 -> //SQL Select * from DB
KUMPV026I Processing record 0252 -> //ATTRIBUTES
KUMPV026I Processing record 0253 -> AVAIL_SPACE_MB N 8 @Available
Space (MB)
KUMPV026I Processing record 0254 -> CAPACITY_MB N 8 @Assigned
Capacity (MB)
KUMPV026I Processing record 0255 -> MAX_EXTENSION_MB N 8 @Maximum
Extension (MB)
KUMPV026I Processing record 0256 -> MAX_REDUCTION_MB N 12 @Maximum
Reduction (MB)
KUMPV026I Processing record 0257 -> PAGE_SIZE C 999999 @Page
Size (bytes)
KUMPV026I Processing record 0258 -> USABLE_PAGES N 8 @Total
Usable Pages
KUMPV026I Processing record 0259 -> USED_PAGES N 8 @Used
Pages
KUMPV026I Processing record 0260 -> PCT_UTILIZED N 4 @Pct Util
KUMPV026I Processing record 0261 -> MAX_PCT_UTILIZED N 4 @Max. Pct
Util
KUMPV026I Processing record 0262 -> PHYSICAL_VOLUMES N 8 @Physical
Volumes
KUMPV026I Processing record 0263 -> BUFF_POOL_PAGES N 12 @Buffer
Pool Pages
KUMPV026I Processing record 0264 -> TOTAL_BUFFER_REQ N 12 @Total
Buffer Requests

360 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0265 -> CACHE_HIT_PCT N 4 @Cache Hit
Pct.
KUMPV026I Processing record 0266 -> CACHE_WAIT_PCT N 4 @Cache
Wait Pct.
KUMPV026I Processing record 0267 -> BACKUP_RUNNING D 12 @Backup
in Progress?
KUMPV026I Processing record 0268 -> BACKUP_TYPE D 20 @Type of
Backup In Progress
KUMPV026I Processing record 0269 -> NUM_BACKUP_INCR C 999999
@Incrementals Since Last Full
KUMPV026I Processing record 0270 -> BACKUP_CHG_MB N 4 @Changed
Since Last Backup (MB)
KUMPV026I Processing record 0271 -> BACKUP_CHG_PCT N 4
@Percentage Changed
KUMPV026I Processing record 0272 -> LAST_BACKUP_DATE D 28 @Last
Complete Backup Date/Time
KUMPV026I Processing record 0273 -> DB_REORG_EST N 8 @Estimate
of Recoverable Space (MB)
KUMPV026I Processing record 0274 -> DB_REORG_EST_TIME D 28 @Last
Estimate of Recoverable Space (MB)
KUMPV026I Processing record 0275 -> //NAME DBBACKUPTRIGGER S 300
@Database backup trigger information
KUMPV026I Processing record 0276 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0277 -> //SQL Select * from DBBACKUPTRIGGER
KUMPV026I Processing record 0278 -> //ATTRIBUTES
KUMPV026I Processing record 0279 -> DEVCLASS D 32 @Full Device
Class
KUMPV026I Processing record 0280 -> INCRDEVCLASS D 32 @Incremental
Device Class
KUMPV026I Processing record 0281 -> LOGFULLPCT C 999999 @Log Full
Percentage
KUMPV026I Processing record 0282 -> NUMICREMENTAL C 999999
@Incrementals Between Fulls
KUMPV026I Processing record 0283 -> CHG_TIME D 28 @Last Update
Date/Time
KUMPV026I Processing record 0284 -> CHG_ADMIN D 64 @Last Update
by (administrator)
KUMPV026I Processing record 0285 -> MININTERVAL C 999999 @Minimum
Backup Interval (minutes)
KUMPV026I Processing record 0286 -> MINLOGFREE C 999999 @Minimum
Log Percentage Freed
KUMPV026I Processing record 0287 -> //NAME DBSPACETRIGGER S 300
@Database space trigger information

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 361

KUMPV026I Processing record 0288 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0289 -> //SQL Select * from DBSPACETRIGGER
KUMPV026I Processing record 0290 -> //ATTRIBUTES
KUMPV026I Processing record 0291 -> FULLPCT C 999999 @DB
Full Percentage
KUMPV026I Processing record 0292 -> EXPANSIONPCT C 999999 @DB
Space Expansion Percentage
KUMPV026I Processing record 0293 -> EXPANSION_PREFIX D 252 @DB
Expansion prefix
KUMPV026I Processing record 0294 -> MAXIMUM_DB_SIZE N 8 @DB Maximum
Size (Megabytes)
KUMPV026I Processing record 0295 -> MIRROR_PREFIX_1 D 252 @Mirror
Prefix 1
KUMPV026I Processing record 0296 -> MIRROR_PREFIX_2 D 252 @Mirror
Prefix 2
KUMPV026I Processing record 0297 -> CHG_TIME D 28 @Last
Update Date/Time
KUMPV026I Processing record 0298 -> CHG_ADMIN D 64 @Last
Update by (administrator)
KUMPV026I Processing record 0299 -> //NAME DBVOLUMES S 300 @Database
volumes
KUMPV026I Processing record 0300 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0301 -> //SQL Select * from DBVOLUMES
KUMPV026I Processing record 0302 -> //ATTRIBUTES
KUMPV026I Processing record 0303 -> COPY1_NAME D 256 @Volume
Name (Copy 1)
KUMPV026I Processing record 0304 -> COPY1_STATUS D 20 @Copy Status
KUMPV026I Processing record 0305 -> COPY2_NAME D 256 @Volume
Name (Copy 2)
KUMPV026I Processing record 0306 -> COPY2_STATUS D 20 @Copy Status
KUMPV026I Processing record 0307 -> COPY3_NAME D 256 @Volume
Name (Copy 3)
KUMPV026I Processing record 0308 -> COPY3_STATUS D 20 @Copy Status
KUMPV026I Processing record 0309 -> AVAIL_SPACE_MB N 8 @Available
Space (MB)
KUMPV026I Processing record 0310 -> ALLOC_SPACE_MB N 8 @Allocated
Space (MB)
KUMPV026I Processing record 0311 -> FREE_SPACE_MB N 8 @Free Space
(MB)
KUMPV026I Processing record 0312 -> //NAME DEVCLASSES K 300 @Device
Classes
KUMPV026I Processing record 0313 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now

362 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0314 -> //SQL Select * from DEVCLASSES
KUMPV026I Processing record 0315 -> //ATTRIBUTES
KUMPV026I Processing record 0316 -> DEVCLASS_NAME D 32 KEY ATOMIC
@Device Class Name
KUMPV026I Processing record 0317 -> ACCESS_STRATEGY D 12 @Device
Access Strategy
KUMPV026I Processing record 0318 -> STGPOOL_COUNT N 8 @Storage
Pool Count
KUMPV026I Processing record 0319 -> DEVTYPE D 16 @Device
Type
KUMPV026I Processing record 0320 -> FORMAT D 16 @Format
KUMPV026I Processing record 0321 -> CAPACITY D 40 @Est/Max
Capacity
KUMPV026I Processing record 0322 -> MOUNTLIMIT D 12 @Mount
Limit
KUMPV026I Processing record 0323 -> MOUNTWAIT N 8 @Mount Wait
(min)
KUMPV026I Processing record 0324 -> MOUNTRETENTION N 8 @Mount
Retention (min)
KUMPV026I Processing record 0325 -> PREFIX D 8 @Label
Prefix
KUMPV026I Processing record 0326 -> DRIVE D 4 @Drive
Letter
KUMPV026I Processing record 0327 -> LIBRARY_NAME D 32 @Library
KUMPV026I Processing record 0328 -> DIRECTORY D 256 @Directory
KUMPV026I Processing record 0329 -> SERVERNAME D 64 @Server
Name
KUMPV026I Processing record 0330 -> RETRYPERIOD N 8 @Retry
Period
KUMPV026I Processing record 0331 -> RETRYINTERVAL N 8 @Retry
Interval
KUMPV026I Processing record 0332 -> TWO_SIDED D 4 @Twosided
KUMPV026I Processing record 0333 -> SHARED D 4 @Shared
KUMPV026I Processing record 0334 -> HLADDRESS D 256 @HLAddr
KUMPV026I Processing record 0335 -> MINCAPACITY D 40 @Minimum
Capacity
KUMPV026I Processing record 0336 -> WORM D 4 @WORM
KUMPV026I Processing record 0337 -> SCALECAPACITY N 8 @Scaled
Capacity
KUMPV026I Processing record 0338 -> LAST_UPDATE_BY D 64 @Last
Update by (administrator)
KUMPV026I Processing record 0339 -> LAST_UPDATE D 28 @Last
Update Date/Time
KUMPV026I Processing record 0340 -> //NAME DISKS S 300 @Disks

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 363

KUMPV026I Processing record 0341 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0342 -> //SQL Select * from DISKS
KUMPV026I Processing record 0343 -> //ATTRIBUTES
KUMPV026I Processing record 0344 -> NODE_NAME D 64 @Node Name
KUMPV026I Processing record 0345 -> DISK_NAME D 64 @Disk Name
KUMPV026I Processing record 0346 -> WWN D 16 @WWN
KUMPV026I Processing record 0347 -> SERIAL D 64 @Serial
Number
KUMPV026I Processing record 0348 -> ONLINE D 40 @On-Line
KUMPV026I Processing record 0349 -> LAST_UPDATE_BY D 64 @Last Update
by (administrator)
KUMPV026I Processing record 0350 -> LAST_UPDATE D 28 @Last Update
Date/Time
KUMPV026I Processing record 0351 -> //NAME DOMAINS K 300 @Policy
domains
KUMPV026I Processing record 0352 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0353 -> //SQL Select * from DOMAINS
KUMPV026I Processing record 0354 -> //ATTRIBUTES
KUMPV026I Processing record 0355 -> DOMAIN_NAME D 32 KEY
ATOMIC @Policy Domain Name
KUMPV026I Processing record 0356 -> SET_LAST_ACTIVATED D 32
@Activated Policy Set
KUMPV026I Processing record 0357 -> ACTIVATE_DATE D 28
@Activation Date/Time
KUMPV026I Processing record 0358 -> DEFMGMTCLASS D 32
@Activated Default Mgmt Class
KUMPV026I Processing record 0359 -> NUM_NODES N 8 @Number
of Registered Nodes
KUMPV026I Processing record 0360 -> BACKRETENTION C 999999
@Backup Retention (Grace Period)
KUMPV026I Processing record 0361 -> ARCHRETENTION C 999999
@Archive Retention (Grace Period)
KUMPV026I Processing record 0362 -> DESCRIPTION D 256
@Description
KUMPV026I Processing record 0363 -> CHG_TIME D 28 @Last
Update Date/Time
KUMPV026I Processing record 0364 -> CHG_ADMIN D 32 @Last
Update Date/Time
KUMPV026I Processing record 0365 -> PROFILE D 256
@Managing profile
KUMPV026I Processing record 0366 -> //NAME DRIVES S 300 @Drives
KUMPV026I Processing record 0367 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now

364 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0368 -> //SQL Select * from DRIVES
KUMPV026I Processing record 0369 -> //ATTRIBUTES
KUMPV026I Processing record 0370 -> LIBRARY_NAME D 32 @Library
Name
KUMPV026I Processing record 0371 -> DRIVE_NAME D 32 @Drive Name
KUMPV026I Processing record 0372 -> DEVICE_TYPE D 16 @Device Type
KUMPV026I Processing record 0373 -> ONLINE D 40 @On-Line
KUMPV026I Processing record 0374 -> READ_FORMATS D 16 @Read
Formats
KUMPV026I Processing record 0375 -> WRITE_FORMATS D 16 @Write
Formats
KUMPV026I Processing record 0376 -> ELEMENT C 999999 @Element
KUMPV026I Processing record 0377 -> ACS_DRIVE_ID D 16 @ACS DriveId
KUMPV026I Processing record 0378 -> DRIVE_STATE D 40 @Drive State
KUMPV026I Processing record 0379 -> ALLOCATED_TO D 64 @Allocated
to
KUMPV026I Processing record 0380 -> LAST_UPDATE_BY D 64 @Last Update
by (administrator)
KUMPV026I Processing record 0381 -> LAST_UPDATE D 28 @Last Update
Date/Time
KUMPV026I Processing record 0382 -> CLEAN_FREQ D 12 @Cleaning
Frequency (Gigabytes/ASNEEDED/NONE)
KUMPV026I Processing record 0383 -> DRIVE_SERIAL D 64 @Serial
Number
KUMPV026I Processing record 0384 -> VOLUME_NAME D 256 @Volume
Name
KUMPV026I Processing record 0385 -> //NAME DRMCSTGPOOLS S 300 @Copy
storage pools managed by the disaster recovery manager
KUMPV026I Processing record 0386 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0387 -> //SQL Select * from DRMCSTGPOOLS
KUMPV026I Processing record 0388 -> //ATTRIBUTES
KUMPV026I Processing record 0389 -> STGPOOL_NAME D 32 @Storage Pool
Name
KUMPV026I Processing record 0390 -> //NAME DRMEDIA S 300 @Physical
volumes managed by move drmedia
KUMPV026I Processing record 0391 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0392 -> //SQL Select * from DRMEDIA
KUMPV026I Processing record 0393 -> //ATTRIBUTES
KUMPV026I Processing record 0394 -> VOLUME_NAME D 256 @Storage pool
volumes
KUMPV026I Processing record 0395 -> STATE D 20 @State
KUMPV026I Processing record 0396 -> UPD_DATE D 28 @Last Update
Date/Time

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 365

KUMPV026I Processing record 0397 -> LOCATION D 256 @Location
KUMPV026I Processing record 0398 -> STGPOOL_NAME D 32 @Storage Pool
Name
KUMPV026I Processing record 0399 -> LIB_NAME D 32 @Automated
LibName
KUMPV026I Processing record 0400 -> VOLTYPE D 12 @Volume Type
KUMPV026I Processing record 0401 -> //NAME DRMMACHINE S 300 @Disaster
recovery manager machine information
KUMPV026I Processing record 0402 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0403 -> //SQL Select * from DRMMACHINE
KUMPV026I Processing record 0404 -> //ATTRIBUTES
KUMPV026I Processing record 0405 -> MACHINE_NAME D 64 @Machine
Name
KUMPV026I Processing record 0406 -> PRIORITY C 999999
@Machine Priority
KUMPV026I Processing record 0407 -> BUILDING D 16 @Building
KUMPV026I Processing record 0408 -> FLOOR D 16 @Floor
KUMPV026I Processing record 0409 -> ROOM D 16 @Room
KUMPV026I Processing record 0410 -> ADSM_SERVER D 4 @Server?
KUMPV026I Processing record 0411 -> DESCRIPTION D 256
@Description
KUMPV026I Processing record 0412 -> CHARACTERISTICS D 4
@Characteristics?
KUMPV026I Processing record 0413 -> RECINSTRUCTIONS D 4 @Recovery
Instructions?
KUMPV026I Processing record 0414 -> //NAME DRMMACHINECHARS S 300
@Disaster recovery manager machine characteristics
KUMPV026I Processing record 0415 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0416 -> //SQL Select * from DRMMACHINECHARS
KUMPV026I Processing record 0417 -> //ATTRIBUTES
KUMPV026I Processing record 0418 -> MACHINE_NAME D 64 @Machine
Name
KUMPV026I Processing record 0419 -> CHARACTERISTICS D 256
@Characteristics
KUMPV026I Processing record 0420 -> //NAME DRMMACHINENODE S 300
@Disaster recovery manager machine node associations
KUMPV026I Processing record 0421 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0422 -> //SQL Select * from DRMMACHINENODE
KUMPV026I Processing record 0423 -> //ATTRIBUTES
KUMPV026I Processing record 0424 -> MACHINE_NAME D 64 @Machine Name
KUMPV026I Processing record 0425 -> NODE_NAME D 64 @Node Name

366 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0426 -> //NAME DRMMACHINERECINST S 300
@Disaster recovery manager machine recovery instructions
KUMPV026I Processing record 0427 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0428 -> //SQL Select * from
DRMMACHINERECINST
KUMPV026I Processing record 0429 -> //ATTRIBUTES
KUMPV026I Processing record 0430 -> MACHINE_NAME D 64 @Machine
Name
KUMPV026I Processing record 0431 -> RECINSTRUCTIONS D 256 @Recovery
Instructions
KUMPV026I Processing record 0432 -> //NAME DRMMACHINERECMEDIA S 300
@Disaster recovery manager machine recovery media associations
KUMPV026I Processing record 0433 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0434 -> //SQL Select * from
DRMMACHINERECMEDIA
KUMPV026I Processing record 0435 -> //ATTRIBUTES
KUMPV026I Processing record 0436 -> MACHINE_NAME D 64 @Machine Name
KUMPV026I Processing record 0437 -> RECMEDIA_NAME D 32 @Recovery
Media Name
KUMPV026I Processing record 0438 -> //NAME DRMPSTGPOOLS S 300 @Primary
storage pools managed by the disaster recovery manager
KUMPV026I Processing record 0439 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0440 -> //SQL Select * from DRMPSTGPOOLS
KUMPV026I Processing record 0441 -> //ATTRIBUTES
KUMPV026I Processing record 0442 -> STGPOOL_NAME D 32 @Storage Pool
Name
KUMPV026I Processing record 0443 -> //NAME DRMRECOVERYMEDIA K 300
@Disaster recovery manager recovery media
KUMPV026I Processing record 0444 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0445 -> //SQL Select * from
DRMRECOVERYMEDIA
KUMPV026I Processing record 0446 -> //ATTRIBUTES
KUMPV026I Processing record 0447 -> RECMEDIA_NAME D 32 KEY ATOMIC
@Recovery Media Name
KUMPV026I Processing record 0448 -> TYPE D 8 @Type
KUMPV026I Processing record 0449 -> LOCATION D 256 @Location
KUMPV026I Processing record 0450 -> DESCRIPTION D 256 @Description
KUMPV026I Processing record 0451 -> PRODUCT D 16 @Product
KUMPV026I Processing record 0452 -> PRODUCT_INFO D 256 @Product
Information

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 367

KUMPV026I Processing record 0453 -> VOLUMES D 256 @Volume
Names
KUMPV026I Processing record 0454 -> //NAME DRMSRPF S 300 @Recovery
plan files in source server
KUMPV026I Processing record 0455 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0456 -> //SQL Select * from DRMSRPF
KUMPV026I Processing record 0457 -> //ATTRIBUTES
KUMPV026I Processing record 0458 -> RPF_NAME D 256 @Recovery
Plan File Name
KUMPV026I Processing record 0459 -> NODE_NAME D 68 @Node Name
KUMPV026I Processing record 0460 -> DEVCLASS_NAME D 32 @Device
Class Name
KUMPV026I Processing record 0461 -> TYPE D 36 @Recovery
Plan File Type
KUMPV026I Processing record 0462 -> MGMTCLASS_NAME D 32 @Mgmt Class
Name
KUMPV026I Processing record 0463 -> RPF_SIZE N 12 @Recovery
Plan File Size
KUMPV026I Processing record 0464 -> RPF_DELETE D 20 @Marked For
Deletion
KUMPV026I Processing record 0465 -> RPF_DELDATE D 28 @Deletion
Date
KUMPV026I Processing record 0466 -> //NAME DRMSTANZA S 300 @Recovery
plan file stanza names
KUMPV026I Processing record 0467 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0468 -> //SQL Select * from DRMSTANZA
KUMPV026I Processing record 0469 -> //ATTRIBUTES
KUMPV026I Processing record 0470 -> STANZA_NAME D 256 @Stanza Name
KUMPV026I Processing record 0471 -> //NAME DRMSTATUS S 300 @Disaster
recovery manager status information
KUMPV026I Processing record 0472 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0473 -> //SQL Select * from DRMSTATUS
KUMPV026I Processing record 0474 -> //ATTRIBUTES
KUMPV026I Processing record 0475 -> PLANPREFIX D 200 @Recovery
Plan Prefix
KUMPV026I Processing record 0476 -> INSTRPREFIX D 200 @Plan
Instructions Prefix
KUMPV026I Processing record 0477 -> PLANVPOSTFIX D 4 @Replacement
Volume Postfix
KUMPV026I Processing record 0478 -> NONMOUNTNAME D 256 @Not
Mountable Location Name

368 Tivoli Management Services Warehouse and Reporting

KUMPV026I Processing record 0479 -> COURIERNAME D 256 @Courier
Name
KUMPV026I Processing record 0480 -> VAULTNAME D 256 @Vault Site
Name
KUMPV026I Processing record 0481 -> DBBEXPIREDAYS N 8 @DB Backup
Series Expiration Days
KUMPV026I Processing record 0482 -> CHECKLABEL D 20 @Check Label?
KUMPV026I Processing record 0483 -> FILEPROCESS D 20 @Process FILE
Device Type?
KUMPV026I Processing record 0484 -> CMDFILENAME D 256 @Command
File Name
KUMPV026I Processing record 0485 -> RPFEXPIREDAYS N 8 @Recovery Plan
File Expiration Days
KUMPV026I Processing record 0486 -> //NAME DRMTRPF S 300 @Recovery
plan files in target server
KUMPV026I Processing record 0487 -> //SOURCE ODBC TSMODBC user=vasfi
pswd=good4now
KUMPV026I Processing record 0488 -> //SQL Select * from DRMTRPF
KUMPV026I Processing record 0489 -> //ATTRIBUTES
KUMPV026I Processing record 0490 -> RPF_NAME D 256 @Recovery
Plan File Name
KUMPV026I Processing record 0491 -> NODE_NAME D 68 @Node Name
KUMPV026I Processing record 0492 -> DEVCLASS_NAME D 32 @Device
Class Name
KUMPV026I Processing record 0493 -> TYPE D 36 @Recovery
Plan File Type
KUMPV026I Processing record 0494 -> MGMTCLASS_NAME D 32 @Mgmt Class
Name
KUMPV026I Processing record 0495 -> RPF_SIZE N 12 @Recovery
Plan File Size
KUMPV026I Processing record 0496 -> RPF_DELETE D 20 @Marked For
Deletion
KUMPV026I Processing record 0497 -> RPF_DELDATE D 28 @Deletion
Date
KUMPV000I Validation completed successfully
KUMPV090I Application metafile validation report saved in file
C:\IBM\ITM\TMAITM6\metafiles\tivstm.rpt.

KUMPS065I Do you wish to Import or Refresh this metafile?
<Import/Refresh/Cancel>
import
KUMPS020I Import successfully completed for tivstm.mdl

6. After you do this, restart the Universal Agent.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 369

5.3.2 Viewing the data in the Tivoli Enterprise Portal

To view the data that is collected by the newly configured Universal Agent,
perform the following steps:

1. Log on to either your TEP desktop client or your TEP web client.

2. After you log on, you can see the new agent that is added by selecting
Enterprise → Windows Systems → Hostname → Universal Agent. See
Figure 5-23.

Figure 5-23 Viewing the data in TEP

370 Tivoli Management Services Warehouse and Reporting

5.4 Tivoli Storage Manager Universal Agent in the Tivoli
Enterprise Portal

To see all the data that is collected by the ODBC data provider running under the
Universal Agent, click the Universal Agent, as shown in Figure 5-24.

Figure 5-24 TSM00 data view in Tivoli Enterprise Portal

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 371

5.4.1 Warehousing the Universal Agent data

To warehouse the data that is being collected by the configured Universal Agent,
perform the following steps:

1. In the tool bar, select the History Configuration button, as shown in
Figure 5-25.

Figure 5-25 TEP Historical Configuration tab

372 Tivoli Management Services Warehouse and Reporting

2. The History Collection Configuration window opens. In the Select a product
drop-down list, select the name, which is given in the mdl file to the Universal
Agent (//APPL TSM). This was TSM in our example. See Figure 5-26.

Figure 5-26 TSM history collection configuration window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 373

3. In the Attribute Group list, click the group names. This enables the
Configuration Control options. You can now specify the Collection Interval.
Four options are available. Data for metrics presented under the Attribute
Groups can be collected every 5, 15, 30 or every 60, minutes, as shown in
Figure 5-27.

Figure 5-27 TSM collection interval configuration window

374 Tivoli Management Services Warehouse and Reporting

4. You can specify the collection location. Two options are available. Historical
data can be collected at either the Tivoli Enterprise Monitoring Agent (agent)
or at the Tivoli Enterprise Monitoring Server (management server, hub or
remote). We recommend that you specify to collect data at the Tivoli
Enterprise Monitoring Agent location, as shown in Figure 5-28.

Figure 5-28 TSM collection location configuration window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 375

5. Select the warehouse interval. Two options are available. Historical data can
be uploaded to Warehouse using the Warehouse Proxy agent ever hour or
every 24 hours. See Figure 5-29.

Figure 5-29 TSM warehouse interval configuration window

376 Tivoli Management Services Warehouse and Reporting

6. After you select all the options under the configuration controls, select the
Configure Groups button to save these changes. You can see the saved
options in the updated panel, as shown in Figure 5-30. You can see that the
options are set to collect data every 15 minutes. This data is stored at the
Tivoli Enterprise Monitoring Agent and written to the warehouse every hour.

Figure 5-30 TSM configuration window

7. To start the data collection, select the Start Collection button to enable
historical collection for the selected attribute groups.

Note: Configuring the collection options for a attribute group does not start
collection for that attribute group. You have to start the collection manually.
We describe how to do this in more detail in the following steps.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 377

The Collection field in the Select Attribute Groups section shows the status of
the agent as Started, as shown in Figure 5-31. That is, the agent has started
collection.

Figure 5-31 Tivoli Storage Manager started status in configuration window

378 Tivoli Management Services Warehouse and Reporting

The history collection has now started. You can confirm this by looking at the
Universal Agents view, which shows a date/time icon, as shown in
Figure 5-32.

Figure 5-32 Tivoli Enterprise Portal Tivoli Storage Manager date/time icon

5.5 Viewing data in Tivoli Enterprise Portal Server using
an external ODBC data source

You can add any ODBC data source to Tivoli Enterprise Portal Server and view
the data in the TEP desktop client. This data is only used for viewing purposes.

If you want to view data from an Oracle database, you can configure the portal
server to add that data source by using the commands shown in Example 5-6.

Example 5-6 Adding a data source example

C:\IBM\ITM\BIN>tacmd login -u sysadmin -s berlin
Password?
Validating user...
KUIC00007I: User sysadmin logged into server on https://berlin:3759.
C:\IBM\ITM\BIN>tacmd configureportalserver -s OracleDB -p DSN=OracleDB
UID=system PWD=password
 KUICRA031: Are you sure you want to create the OracleDB datasource in
the portal server configuration file C:\IBM\ITM\CNPS\kfwcma.ini and the
Windows Registry with the following properties?
DSN=OracleDB;UID=system;PWD=password
Enter Y for yes or N for no: Y
KUICCP013I: The OracleDB datasource in the portal server configuration
file C:\IBM\ITM\CNPS\kfwcma.ini has been created with the following
properties:

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 379

DSN=OracleDB;UID=system;PWD=password
KUICCP029I: The OracleDB datasource in the Windows Registry has been
created with the following properties:
DSN=OracleDB;UID=system;PWD=password

After you log in to the Tivoli Enterprise Portal Server, you can write a query to
view data from your custom data source. To configure this, perform the following
steps:

1. From the TEP client, open the Query Editor. You can create a custom query
by selecting OracleDB data source and assign this query (OracleSQL)
under Tivoli Enterprise Monitoring Server category to a view. The Query and
View are displayed, as shown in Figure 5-33.

Figure 5-33 Creating a query from an ODBC data source

Note: After you add this data source, you must restart the Tivoli Enterprise
Portal Server.

380 Tivoli Management Services Warehouse and Reporting

2. In the Custom SQL window, enter the following SQL (or an SQL of your
choice):

SELECT PID, USERNAME, PROGRAM, PGA_USED_MEM, PGA_ALLOC_MEM,
PGA_FREEABLE_MEM, PGA_MAX_MEM FROM V$PROCESS;

Click Apply and OK, as shown in Figure 5-34.

Figure 5-34 Custom SQL window

3. Select any workspace and you can apply the OracleSQL query created in the
previous step.

a. Select a workspace at Enterprise Level, and click File → Save
Workspace as, and give it a name.

b. Drag and drop a table icon on the empty view and click Yes to assign the
query.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 381

c. Select Click here to assign a query button, as shown in Figure 5-35.

Figure 5-35 Assigning a custom query to a workspace

d. Select the query (OracleSQL), which was created in the previous step. It
is located under Queries → Tivoli Enterprise Monitoring Server →
Custom SQL.

382 Tivoli Management Services Warehouse and Reporting

e. Click OK, Apply, and OK again, as shown in Figure 5-36.

Figure 5-36 Query selection window

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 383

The view opens with the data retrieved using SQL query, as shown in
Figure 5-37.

Figure 5-37 Custom SQL query workspace view example

384 Tivoli Management Services Warehouse and Reporting

You can also make bar charts for this data, as shown in Figure 5-38.

Figure 5-38 Custom data source bar graph view

Important: The data retrieved from a custom data source is for viewing and
visualization purposes only. No history collection can be performed on the
data queried using the custom data source. Use the Universal Agent to collect
the data if you want to collect historical data for a source.

 Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse 385

386 Tivoli Management Services Warehouse and Reporting

Chapter 6. OPAL solutions and
reporting with BIRT

This chapter starts by discussing several commercial reporting solutions that you
can use with Tivoli Data Warehouse V2.1. These solutions are listed in the
IBM Tivoli Open Process Automation Library (OPAL) Web site, which is a
catalog of solutions provided by IBM and IBM Business Partners.

We also present a reporting solution that we developed during this IBM Redbook
project, based on the requirements of a real client. This solution is based on
Business Intelligence and Reporting Tools (BIRT), an open source reporting
system with a case study based on a real-life client deployment scenario.

This chapter discusses the following topics:

� “IBM Tivoli Open Process Automation Library” on page 388

� “Case study: Web-publishing with BIRT” on page 391

6

Important: It is important to note that with the no-charge DB2 license that
comes with IBM Tivoli Monitoring product, you are only entitled to access data
from DB2 using native IBM Tivoli Monitoring interfaces. If you use an external
reporting tool to access the data, you have to buy a DB2 license.

© Copyright IBM Corp. 2007. All rights reserved. 387

6.1 IBM Tivoli Open Process Automation Library

IBM Tivoli Open Process Automation Library (OPAL) is a worldwide online
catalog accessible at:

http://catalog.lotus.com/wps/portal/topal/

This Web site provides a central location for hundreds of technically validated,
ready-to-use Tivoli product extensions and services provided by IBM and
IBM Business Partners.

OPAL contains downloadable product extensions such as:

� Automation packages
� Integration adapters
� Documentation
� Plug-in tool kits
� Technical services

In the OPAL catalog, the most evaluated topics in the data warehouse reporting
area are:

� QuickReporter for IBM Tivoli Monitoring (Primeur)
� Warehouse Designer for IBM Tivoli Monitoring 6.1 (Axibase)
� Warehouse reporting using BIRT

Let us take a deeper look at these three solutions.

6.1.1 QuickReporter for IBM Tivoli Monitoring (Primeur)

QuickReporter for ITM is a product developed by PRIMEUR, a Premier Level
IBM Business Partner. QuickReporter for ITM was the first solution that
leveraged Business Intelligence and Reporting Tools (BIRT) technologies to
provide a simple yet effective solution for generating PDF and HTML reports on
resources managed by IBM Tivoli Monitoring V6.1 and other Tivoli products
based on Tivoli Data Warehouse V2.1. QuickReporter for ITM does not require
any database skill or knowledge of Tivoli Data Warehouse data schema.

Quick Reporter for ITM provides a large catalog (hundreds) of predefined
reports: single or multi-metric; trend, summary, or rank; daily, weekly or monthly.
A user-friendly Web interface can be used to select report types and associated
monitored resources and to view (and save) generated reports.

Quick Reporter for ITM supports the following agents: IBM AS/400®, Windows,
UNIX, Linux, IBM DB2, Oracle, Microsoft SQL Server, Microsoft Exchange, and
Active Directory.

388 Tivoli Management Services Warehouse and Reporting

http://catalog.lotus.com/wps/portal/topal/

Main features of QuickReporter for IBM Tivoli Monitoring
The main features of QuickReporter for ITM are as follows:

� Reports can be generated in both PDF and HTML format

� Reports can be daily, weekly, and monthly based

� Reports can display trends for single or multiple metrics, in a single (overlay
report) or multiple charts; reports can also display multiple resources as
ranked with respect to one or more metrics

� Reports can be generated either at scheduled time or on demand

� Report can be generated for specific resources or resource groups managed
by Tivoli, as discovered from Tivoli Data Warehouse

� A user-friendly Web interface can be used to both configure (admin role) the
reports to be generated and to view or save (user role) generated reports

A new version of QuickReporter for ITM, Quick Reporter for ITM V2.0 will be
available as of year end 2006. Among the major planned enhancements,
QuickReporter for ITM will provide the ability to design and use custom reports,
that is, reports where the graphical layout (for example, report title, additional
information, and so on), the displayed metrics (such as IBM Tivoli Monitoring
attributes, Tivoli Data Warehouse table and metric name), and time intervals of
interest can be fully user specified. In particular, this feature will enable the
definition of reports for data collected from Universal Agents.

QuickReporter for ITM has been certified by IBM as a Ready for Tivoli solution
and it is published on IBM OPAL (Open Process Automation Library) Web site.

For more information, see the Primeur Web site at:

http://www.primeur.com

Information about Primeur Quick Reporter for ITM V1.4 can be found at:

http://www.primeur.com/products/system_management/tivoli/qr4itm_v14.htm
l

6.1.2 Warehouse Designer for IBM Tivoli Monitoring 6.1 (Axibase)

Warehouse Designer is a Web-based solution for creating time-series graphs
and reports based on historical and real-time performance data collected in Tivoli
Data Warehouse V2.1 and IBM Tivoli Monitoring V6.1.

By integrating query-by-example modeler, chart viewer, and dual-repository data
adapter with a simple Web-based interface, the Warehouse Designer enables
users to easily access predefined charts and reports, and create their own

 Chapter 6. OPAL solutions and reporting with BIRT 389

http://www.primeur.com
http://www.primeur.com/products/system_management/tivoli/qr4itm_v14.html
http://www.primeur.com/products/system_management/tivoli/qr4itm_v14.html

interactive charts and PDF reports without spending time on programming
queries in SQL and mastering Tivoli Data Warehouse database schema.

The designer automatically discovers available tables, agents, and attributes,
and it makes the design process as easy as selecting values from drop-down
lists on a Web-based form.

Warehouse Designer for IBM Tivoli Monitoring 6.1 has been certified by IBM as a
Ready for Tivoli solution and it is published on IBM OPAL (Open Process
Automation Library) Web site.

Main features of Warehouse Designer for ITM 6.1
The main features of Warehouse Designer for IBM Tivoli Monitoring are as
follows:

� Real-time and historical time-series graphs based on Tivoli Data Warehouse
data

� Form-based, query-by-example modeler with Tivoli Data Warehouse schema
auto-discovery

� User-configurable chart options, including 3-D layout, zooming, and trend
lines

� Raw data and aggregate statistics within a single viewbox

� Flexible report scheduling based on UNIX cron command syntax

� Frequently used query bookmarks and reporting dashboard

� Key Tivoli Data Warehouse health and growth statistics

� Integrated IBM Tivoli Monitoring security

For more information about Axibase’s offerings, see the following Web site:

http://www.axibase.com

For more information about Warehouse Designer for IBM Tivoli Monitoring 6.1,
refer to the solution Web page at:

http://www.axibase.com/tivoli

6.1.3 Warehouse reporting using BIRT

BIRT is an Eclipse-based open source reporting system for Web applications,
especially those based on Java and Java 2 Platform, Enterprise Edition (J2EE).
BIRT has two main components: A Report Designer based on Eclipse and a
runtime component that you can add to your application server (the BIRT
Viewer).

390 Tivoli Management Services Warehouse and Reporting

http://www.axibase.com/tivoli
http://www.axibase.com/tivoli
http://www.axibase.com
http://www.axibase.com/tivoli
http://www.axibase.com/tivoli

Your BIRT reports can have charts, lists, graphics, and tables. You can use BIRT
to sort, filter, and group data in a report and add business-specific logic using
JavaScript™. A report produced in BIRT can produce the output as a PDF
document or an HTML document.

You can find more documentation and information about BIRT at the Eclipse
Web site:

http://www.eclipse.org/birt/phoenix/

6.2 Case study: Web-publishing with BIRT

This section provides an example of a BIRT-based reporting solution that is
based on a real-life client scenario. We discuss the following topics:

� Client scenario and requirements
� Our lab environment
� The developed solution

6.2.1 Client scenario and requirements

In this case study, we make the following assumptions:

� Tivoli Monitoring V6.1 is installed and operational
� The data warehouse database is created and populated
� The monitoring agents are active and are collecting data

The client requirements, in terms of reporting capabilities, are:

� Possibility to define relative time slots filters: for example, last 24 hours, last
week

� Possibility to define reports for a group of servers (and not all)

� Report generation must be scheduler-based; preferred output format is: PDF,
HTML

 Chapter 6. OPAL solutions and reporting with BIRT 391

http://www.eclipse.org/birt/phoenix/

6.2.2 Our lab environment

Our test environment consists of three machines, as shown in Figure 6-1.

Figure 6-1 Our test environment

The warehouse database resides on an IBM DB2 Universal Database 8.1.2, and
the chosen Application Server is an Apache Tomcat 5.5.20 with Java Developer
Kit 1.4. See the Apache Tomcat Web site for specific installation instructions:

http://tomcat.apache.org/index.html

6.2.3 The developed solution

To meet the client’s requirements, we create four BIRT reports, based on UNIX
disks, Linux CPU, DB2 table spaces, Tivoli Enterprise Console throughput, and
Tivoli Storage Manager usage data.

Java
Application

Server

desktop PC
Microsoft Windows 2000

berlin.itsc.austin.ibm.com
Microsoft Windows 2003 Server AE

Warehouse

oslo.itsc.austin.ibm.com
GNU/Linux 2.6.5-7.97

Birt Report
Designer

392 Tivoli Management Services Warehouse and Reporting

http://tomcat.apache.org/index.html
http://tomcat.apache.org/index.html

Table 6-1 shows the five sample reports.

Table 6-1 Sample reports

To manage timestamp/data selection and visualization, we also developed two
specific DB2 functions.

In the following section, we provide detailed instructions to install the BIRT
environment, create the DB2 functions, and create the BIRT reports.

Installing the BIRT Designer
You can install BIRT with existing Eclipse installations. If you currently do not
have Eclipse installed or want to have a separate Eclipse installation for BIRT,
follow these instructions. All the software you require can be downloaded from:

http://download.eclipse.org/birt/downloads

1. Get the Report Designer Full Eclipse Installation file (Eclipse SDK), extract
the package eclipse-SDK-3.2.1-win32.zip, and place it where you want (for
example C:\Program Files).

2. Download itext-1.3.jar file and copy it to the directory
$INSTALL_DIR\eclipse\plugins\com.lowagie.itext\lib.

Report description Report name Layout type

Detailed CPU usage per host CPU Usage per host Bar chart and table

Daily system disks usage Disk Usage Table

DB2 table spaces usage DB2 Tablespaces Table and line chart

Tivoli Enterprise Console throughput TEC Throughput Line chart

Tivoli Storage Manager usage TSM Usage Bar chart

Note: If you want to implement these scenarios, you can download the rpt
design files that we used in our case study from the International Technical
Support Organization (ITSO) Web site. For downloading instructions, see
Appendix B, “Additional material” on page 521.

 Chapter 6. OPAL solutions and reporting with BIRT 393

http://download.eclipse.org/birt/downloads

Installing the BIRT Report Viewer
The BIRT Report Viewer is an applet, which you can use to view reports without
having to install the full designer.

1. Get the Report Engine installation file and place it in following directory:

$TOMCAT_INSTALL/webapps/

2. Download itext-1.3.jar file and copy it to the following directory:

$BIRT_INSTALL/WEB-INF/platform/plugins/com.lowagie.itext/lib

Installing the JDBC drivers
To connect to the warehouse database, it is necessary to download some Java
Database Connectivity (JDBC) drivers (db2jcc.jar and db2jcc_license_cu.jar). In
our example, we used IBM DB2 Drivers for JDBC and SQLJ. These drivers can
be downloaded from the following Web site:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=sw
g-dm-db2jdbcdriver&S_PKG=dl&S_TACT=dm-db2jdbcdriver&lang=it_IT&cp=UTF-8

Setting up drivers for the BIRT Designer
Use the data source editor’s JDBC driver management wizard.

1. To start the wizard, open a BIRT report design, go to the Data Explorer view.

2. Right-click Data Sources and select New Data Source.

3. Choose JDBC Data Source and click Next.

4. In the new dialog box, choose Manage Drivers.

5. This opens the Manage JDBC Drivers dialog box. In the JAR Files tab, click
Add to add the JAR file required by your JDBC driver. Go to the Driver tab to
confirm that the list of drivers includes the new drivers that are added.

You might also want to assign a display name and URL template for the new
drivers in this tab.

Setting up drivers for BIRT Viewer
Copy or link the jar files to the following directory:

$BIRT_INSTALL/WEB-INF/platform/plugins/org.eclipse.birt.report.data.oda.jdbc

Creating specific DB2 functions
To translate the format of the Timestamp field of IBM Tivoli Monitoring tables in a
human-readable format, we develop a specific function. See Example 6-1. In this
case, follow the SQL statements that are used.

394 Tivoli Management Services Warehouse and Reporting

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-dm-db2jdbcdriver&S_PKG=dl&S_TACT=dm-db2jdbcdriver&lang=it_IT&cp=UTF-8

Example 6-1 Defining DB2 function TWH_TIMESTAMP_FMT

-- This function translate the Timestamp field of ITM tables
-- in an human-readable format. E.g
-- From : 1061003161020000
-- To : 20061003:1610:20000
--
CREATE FUNCTION TDW_TIMESTAMP_FMT (PARAM VARCHAR(16))
RETURNS VARCHAR(20)
RETURN '20' || substr(PARAM,2,6) || ':'
 || substr(PARAM,8,4) || ':'
 || substr(PARAM,12,5);

We also require three other functions that can manage relative time slots filters
(for example, Last week, Last month, and so on). See Example 6-2.

Example 6-2 Defining DB2 functions FIRST_DAY and LAST_DAY

-- Functions first_day and last_day
-- based on current date and the input parameter returns a date in
char(16) format
--
-- List of possible input parameter :
--
-- L7 Last seven days
-- LW Last week
-- L14 Last 14 days
-- L2W Last two weeks
-- L30 Last 30 days
-- LM Last month
-- L60 Last 60 days
-- L2M Last two months
-- YTD Year to date
-- LY Last year
--
-- The function in DATE_2_TDW_TS convert the date from ITM format
CYYMMDDtimestamp

CREATE FUNCTION DATE_2_TDW_TS (PARAM DATE)
RETURNS CHAR(16)
RETURN ('1' || SUBSTR(CHAR(PARAM,ISO),3,2) ||
SUBSTR(CHAR(PARAM,ISO),6,2) || SUBSTR(CHAR(PARAM,ISO),9,2) ||
'000000000');

 Chapter 6. OPAL solutions and reporting with BIRT 395

CREATE FUNCTION FIRST_DAY (PARAM VARCHAR(6))
 RETURNS CHAR(16)
 LANGUAGE SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
 SELECT CASE
 WHEN PARAM='L7' THEN DATE_2_TDW_TS(current date - 7
DAYS)
 WHEN PARAM='LW' THEN DATE_2_TDW_TS(current date -
(DAYOFWEEK(current date) + 6) DAYS)
 WHEN PARAM='L14' THEN DATE_2_TDW_TS(current date - 14
DAYS)
 WHEN PARAM='L2W' THEN DATE_2_TDW_TS(current date -
(DAYOFWEEK(current date) + 13) DAYS)
 WHEN PARAM='L30' THEN DATE_2_TDW_TS(current date - 30
DAYS)
 WHEN PARAM='LM' THEN DATE_2_TDW_TS(current date - 1
MONTH - DAY(current date) DAYS +1 DAY)
 WHEN PARAM='L60' THEN DATE_2_TDW_TS(current date - 60
DAYS)
 WHEN PARAM='L2M' THEN DATE_2_TDW_TS(current date - 2
MONTH - DAY(current date) DAYS +1 DAY)
 WHEN PARAM='YTD' THEN DATE_2_TDW_TS(current date -
(DAYOFYEAR(current date) -1) DAYS)
 WHEN PARAM='LY' THEN DATE_2_TDW_TS(current date - 1
YEAR - (DAYOFYEAR(current date) -1) DAYS)
 END
 FROM sysibm.sysdummy1;

CREATE FUNCTION LAST_DAY (PARAM VARCHAR(6))
 RETURNS CHAR(16)
 LANGUAGE SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
 SELECT CASE
 WHEN PARAM IN ('L7','L14','L30','L60','YTD') THEN
DATE_2_TDW_TS(current date)
 WHEN PARAM='LW' THEN DATE_2_TDW_TS(current date -
DAYOFWEEK(current date) DAYS)
 WHEN PARAM='L2W' THEN DATE_2_TDW_TS(current date -
DAYOFWEEK(current date) DAYS)

396 Tivoli Management Services Warehouse and Reporting

 WHEN PARAM='LM' THEN DATE_2_TDW_TS(current date -
(DAY(current date)) DAYS)
 WHEN PARAM='L2M' THEN DATE_2_TDW_TS(current date -
(DAY(current date)) DAYS)
 WHEN PARAM='LY' THEN DATE_2_TDW_TS(current date -
(DAYOFYEAR(current date)) DAYS)
 END
 FROM sysibm.sysdummy1;

6.2.4 Report creation: Detailed CPU usage per host

The first step in creating a report is to create a report project.

1. From the File menu, select New → Project to launch the New Project Wizard.

2. Open the Business Intelligence and Reporting Tools folder, select Report
Project and click Next.

3. Name the project Sample and click Finish.

4. In the window that prompts you to switch to the Report Design perspective,
click Yes.

5. To create a report, right-click the Sample project in the Navigator, select
New, and then click Report. Name the report CPU_Usage.rptdesign. When
you expand your Navigator, it looks like Figure 6-2.

Figure 6-2 Creating a new project report

 Chapter 6. OPAL solutions and reporting with BIRT 397

Creating a new data source
Create a data source that tells BIRT how to connect to the database. To do so,
perform the following steps:

1. In the Data Explorer, right-click Data Sources and click New Data Source.

2. Click JDBC Data Source and name it Sample Data Source. Click Next, as
shown in Figure 6-3.

Figure 6-3 Creating a new data source

3. In the resulting page (Figure 6-4), specify the connection string for the data
source:

a. Select the driver class com.ibm.db2.jcc.DB2Driver (v2.9).

b. Type the database URL in the format jdbc:db2://hostname:port/dbname
(in our environment, it is
jdbc:db2://berlin.itsc.austin.ibm.com:50000/warehous).

c. Type your RDBMS user ID and password and test the connection.

d. When the test is successful, click Finish.

398 Tivoli Management Services Warehouse and Reporting

Figure 6-4 Defining a new data source

Creating a new data set
To display data from the data source on the report, you must create data sets for
it. A data set represents the data that is available from the database to be put on
the report. You can have many data sets for one data source. If your reports are
talking to several databases, each one will be a data source, and each query that
you want displayed on the report will be a data set for that data source.

To create a data set, perform the following steps:

1. In the Data Explorer, right-click Data Sets and click New Data Set.

2. The New Data Set window opens, as shown in Figure 6-5.

a. Give a name to the new data set (for example, Linux_CPU).
b. In the Data Source field, select the newly created data source.
c. In the Data Set Type field, select SQL Select Query.
d. Click Next.

 Chapter 6. OPAL solutions and reporting with BIRT 399

Figure 6-5 Creating a new data set

3. Define an SQL query in the window shown in Figure 6-6. In the right pane of
the window, enter the SQL statements or you can compose it by selecting the
required tables and fields from the left pane.

Note: Query builder is not fully compatible with the way IBM Tivoli
Monitoring set up the warehouse database. The name of the table and the
fields has to be in quotation marks, as shown in Figure 6-6.

400 Tivoli Management Services Warehouse and Reporting

In this example, the user-defined db2 function TWH_TIMESTAMP_FMT
translates the Timestamp field to a human-readable format. For specific SQL
statements that are used to define the functions, see “Creating specific DB2
functions” on page 394.

After you define the function and the query, click Finish.

Figure 6-6 Defining a data set query

 Chapter 6. OPAL solutions and reporting with BIRT 401

4. In the left pane of the window, click Preview Results. You see the output of
the query, as shown in Figure 6-7. Now you are ready to put the dynamic
content into the report.

Figure 6-7 Previewing results

Creating the new report parameters
You can use BIRT report parameters to interactively filter the report’s data to
gain deeper insights. To do this, perform the following steps:

1. In the Data Explorer pane, right-click Report Parameters and select New
Parameter.

2. The New Parameter window opens, as shown in Figure 6-8. In this widow, you
can specify the following basic properties:

– Name: Type a name for the parameter. If you do not specify a value for
Prompt text, the report user sees the Name value as the prompt. It is good
practice to supply an easily understood name for the parameter in Prompt
text and use the suffix Par for the value that you select for Name to help
distinguish report parameters from other parameter types, such as data
set parameters.

– Type: Select a data type for the parameter. The data type that you select
does not have to match the data type of the field in the data source. The
data type that you select for the report parameter determines the

402 Tivoli Management Services Warehouse and Reporting

formatting options that are available, if you choose to provide a default
value or a list of values for the report parameter.

– Date: Select either Date Time or String. Specifying the string data type
provides more flexibility for the user to specify dates in a variety of
formats.

Click OK. The parameter is displayed under Report Parameters in the Data
Explorer. If necessary, repeat these steps to create additional report
parameters.

Figure 6-8 Defining a new parameter

In our example, we have to configure the capability of filter the selected data
between two specific timestamps and for a particular system name. To do
that, we have to define three new parameters:

– SystemNamePar (preferred system name)
– TimeStamp1Par (timestamp lower limit value)
– Timestamp2Par (timestamp upper limit value)

Figure 6-9, Figure 6-10 on page 405, and Figure 6-11 on page 406 show
these parameters in the definition boxes.

 Chapter 6. OPAL solutions and reporting with BIRT 403

Figure 6-9 shows the SystemNamePar parameter definition.

Figure 6-9 Defining the parameter SystemNamePar

404 Tivoli Management Services Warehouse and Reporting

Figure 6-10 shows the Timestamp1Par parameter definition.

Figure 6-10 Defining the parameter Timestamp1Par

 Chapter 6. OPAL solutions and reporting with BIRT 405

Figure 6-11 shows the Timestamp2Par parameter definition.

Figure 6-11 Defining the parameter Timestamp2Par

406 Tivoli Management Services Warehouse and Reporting

Defining the filtering
To define filtering, perform the following steps:

1. In the Data Explorer pane, double-click the Linux_CPU data set.

2. The Edit Data Set window opens. In the left pane, click Filters and define the
filtering criteria based on the newly defined parameters, as shown in
Figure 6-12.

Figure 6-12 Defining filtering criteria

 Chapter 6. OPAL solutions and reporting with BIRT 407

3. This filtering definition produces a runtime dialog box at report execution, as
shown in Figure 6-13. The default values are shown. You can confirm these
default values or choose different ones using the text box or with the dynamic
list box selections.

Figure 6-13 Parameter dialog box

408 Tivoli Management Services Warehouse and Reporting

Defining the report layout
Drag-and-drop the Linux_CPU data set from the Data Explorer pane to the
CPU_Usage.rptdesign pane, and you can obtain a basic table layout, as shown
in Figure 6-14. Click the Preview tab to visualize your query.

Figure 6-14 Defining a simple table layout

You see the output shown in Figure 6-15.

Figure 6-15 Previewing query result

 Chapter 6. OPAL solutions and reporting with BIRT 409

BIRT Reporting Interface offers various capabilities of report and chart design
and configuration. Figure 6-16 shows an example of a bar chart report
representation of the extracted data.

Figure 6-16 Bar chart representation

410 Tivoli Management Services Warehouse and Reporting

6.2.5 Report creation: Disk usage

After reading the previous example, we assume that you are now familiar with
major BIRT concepts. Therefore, we provide only a high-level overview of our
next report creation. The scope of this report is to show the capability to define
relative time slot filters and data for a specific group of servers.

Data set definition
The date range is delimited by the values returned by the DB2 functions
FIRST_DAY and LAST_DAY. In our example, the parameter LW filters the data
from last Sunday to last Saturday. See Figure 6-17. For specific SQL statements
that are used to define the functions, see “Creating specific DB2 functions” on
page 394.

Figure 6-17 Data set definition

 Chapter 6. OPAL solutions and reporting with BIRT 411

Defining the parameters
To filter data for a specific group of systems, define two parameters that are
subsequently applied.

SystemNamePar parameter enables a radio button menu that permits selections
between a static list of specified system names or the wildcard character (%), as
shown in Figure 6-18.

Figure 6-18 Defining the system name parameter

412 Tivoli Management Services Warehouse and Reporting

Note the difference between the Value and Display Text columns. The Value
column represents the real filter value in SQL statements. The Display Text
column is the text that is displayed to the user, as shown in Figure 6-19.

Figure 6-19 Defining the system pattern parameter

The SystemPatternPar parameter enables a text box menu that you can use to
specify a specific string or pattern.

 Chapter 6. OPAL solutions and reporting with BIRT 413

Data set filtering
To perform data set filtering, select the Filters menu, as shown in Figure 6-20.

Figure 6-20 Defining filters

414 Tivoli Management Services Warehouse and Reporting

Based on the parameters definitions, we have to define the two filters’ criteria,
which are subsequently applied to the data set. Therefore, the final result is a
parameter dialog box similar to Figure 6-21.

Figure 6-21 Runtime parameter box

Figure 6-22 shows a report layout sample.

Figure 6-22 Report layout

 Chapter 6. OPAL solutions and reporting with BIRT 415

6.2.6 Report creation: DB2 table spaces

The aim of this report is to show the table spaces usage history for a given
database and for a particular day and group of table spaces.

Data set definition
In this example, the user-defined DB2 function TWH_TIMESTAMP_FMT
translates the Timestamp field to a human-readable format. See Figure 6-23. For
specific SQL statements that are used to define the functions, see “Creating
specific DB2 functions” on page 394.

Figure 6-23 Data set definition

Defining the parameters
In our example, we configured the capability of filtering the selected data for a
specific timestamp and for a particular table space pattern (for example, ITM%).

416 Tivoli Management Services Warehouse and Reporting

In Figure 6-24 and Figure 6-25 on page 418, these parameters are shown in the
definition boxes. Figure 6-24 shows the timestamp parameter definition.

Figure 6-24 Timestamp parameter definition

 Chapter 6. OPAL solutions and reporting with BIRT 417

Figure 6-25 shows the table space parameter definition.

Figure 6-25 Table space parameter definition

Data set filtering
For data set filtering, perform the following steps

1. In the Data Explorer pane, double-click the Linux_CPU data set.

2. The Edit Data Set window opens, as shown in Figure 6-26. In the left pane,
click Filters and define the filtering criteria based on the newly defined
parameters (Figure 6-18 on page 412 and Figure 6-19 on page 413).

418 Tivoli Management Services Warehouse and Reporting

Figure 6-26 Filtering values

This filtering definition produces a runtime dialog box at report execution, as
shown in Figure 6-27. The default values are shown. You can confirm these
default values or choose different ones using the text box or with the dynamic list
box selections.

Figure 6-27 Runtime parameter window

 Chapter 6. OPAL solutions and reporting with BIRT 419

Sample layout
By combining a table chart and a line chart on the same layout, the report shown
in Figure 6-28 is produced.

Figure 6-28 Report layout

420 Tivoli Management Services Warehouse and Reporting

6.2.7 Report creation: Tivoli Enterprise Console throughput

The goal of this report is to show the quantity of event that is processed and
received by the IBM Tivoli Enterprise Console in a given time slot period.

Data set definition
The date range is delimited by the values returned by the DB2 functions
FIRST_DAY and LAST_DAY. In our example, the parameter LW filters the data
from last Sunday to last Saturday. See Figure 6-29. For specific SQL statements
that are used to define the functions refer to the section “Creating specific DB2
functions” on page 394.

Figure 6-29 Data set definition

 Chapter 6. OPAL solutions and reporting with BIRT 421

Sample layout
By combining two line charts on the same layout, the report shown in Figure 6-30
is produced.

Figure 6-30 Tivoli Enterprise Console throughput report

6.2.8 Report creation: Tivoli Storage Manager usage

The goal of this report is to show the amount of data that is saved by Tivoli
Storage Manager for a specific group of nodes on a particular date.

Data set definition
In our example, in the Data Set Definition panel, we filtered the data on a
particular group of nodes (see the WHERE clause in Figure 6-31).

422 Tivoli Management Services Warehouse and Reporting

Figure 6-31 Data set definition

Filtering values
To filter values, perform the following steps:

1. In the Data Explorer pane, double-click the data set.

2. The Edit Data Set windows opens. In the left pane, click Filters and define
the filtering criteria based on the data parameter, as shown in Figure 6-32.

Figure 6-32 Filtering value

 Chapter 6. OPAL solutions and reporting with BIRT 423

Sample layout
By combining the NODE_NAME and BACKUP_KB fields on a table chart, the
report shown in Figure 6-33 is produced.

Figure 6-33 Tivoli Storage Manager usage sample layout

6.2.9 Publishing results

You can publish the generated report (.rptdesign file) on your application server.
Rptdesign files are located by default in your BIRT Report Designer machine
under the directory C:\Documents and Settings\Administrator\workspace.

To publish the report to the application server, copy the .rptdesign file from the
desktop where it was designed, to the report directory of the application server.
By default, this is the directory where BIRT is installed.

You can view the report by accessing the following link using a Web browser

http://applicationserver:8080/birt/frameset?__report=reportname

424 Tivoli Management Services Warehouse and Reporting

http://applicationserver:8080/birt/frameset?__report=reportname

6.2.10 How to schedule a report

You can schedule your report creation at a specific point in time and produce an
output that can be placed in a specific directory. This enables users to download
reports and view them when they are offline. To do this, you can use the wget
command and schedule it in crontab.

In the following example, we use the wget command to produce a report output in
HTML format:

wget
http://applicationserver:8080/birt/run?__report=reportname&__format=for
mat -O filename

 Chapter 6. OPAL solutions and reporting with BIRT 425

426 Tivoli Management Services Warehouse and Reporting

Chapter 7. Reporting with Crystal
Reports

This chapter describes the best practices for creating Tivoli Data Warehouse
reports using the Crystal Reports product from Business Objects.

Note that because Tivoli Data Warehouse data is stored in a relational database
management system (RDBMS) database, you have a lot of flexibility in selecting
the reporting software to use. Apart from the solutions presented in Chapter 6,
“OPAL solutions and reporting with BIRT” on page 387, you can also use any
third-party reporting solution to create reports against the Tivoli Data Warehouse
data. As an example, we discuss Crystal Reports solution in this chapter.

This chapter discusses the following topics:

� “Crystal Reports” on page 428

� “The developed solution” on page 428

7

© Copyright IBM Corp. 2007. All rights reserved. 427

7.1 Crystal Reports

Crystal Reports is a third-party tool, which you can use to develop reports from
your Tivoli Data Warehouse. The report file format is .rpt. You require a licensed
copy of the software to use it. For more information, see the following Web site:

http://www.businessobjects.com/products/reporting/crystalreports

We describe a few ways in which you can create a report in Crystal Reports. The
version used is Crystal Reports XI. However, we do not cover the usage and
availability of Crystal Reports for Eclipse.

Crystal Reports is a free Eclipse plug-in, which you can use to create reports and
embed them into your Java applications. It is an add-in that has the capabilities
of auto-generating SQL, adding .rpt files to an enterprise platform (.NET, COM,
Java), and free form editing of reports, among others. For more information, see
the following Web site:

http://www.eclipseplugincentral.com/Web_Links-index-req-viewlink-cid-67
0.html

7.2 The developed solution

As part of an effort to develop a solution that is relevant to you as a client, we
demonstrate how to create useful sample reports for you, based on Linux CPU
and UNIX Disks data.

Table 7-1 lists the two sample reports.

Table 7-1 Sample reports

Report title Report description Warehouse tables

CPU Usage by Host Detailed CPU usage by host Linux CPU

Disk Usage Daily system Disk Usage UNIX Disks

Note: It is essential for reporting to be familiar with the tables and their
purposes to create more valuable reports. You require this knowledge to
create other reports and know the meaning of fields in the existing tables of
the warehouse.

428 Tivoli Management Services Warehouse and Reporting

http://www.businessobjects.com/products/reporting/crystalreports
http://www.businessobjects.com/eclipse

7.2.1 Installing Crystal Reports XI Release 2

You require an authorized copy of the software to be able to use this. See your
product’s documentation for more specific details on the following Web site:

http://support.businessobjects.com/documentation/product_guides/default
.asp

After you install Crystal Reports on your machine, you can create database
connections to the warehouse. The following section provides detailed
instructions to create database connections through DB2 Native or Open
Database Connectivity (ODBC).

7.2.2 Creating a database connection

There are two options for creating a database connection in your local machine
where Crystal Reports and DB2 clients are installed:

� Native DB2: This is directly available in Crystal Reports.

� ODBC: This is found as an administrative tool for Windows environment.

To create a database connection, perform the following steps:

1. Select Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

2. Select the Systems DSN tab. Click Add.

Tip: Most of the tables in the warehouse are designed to have the details
required in a single table.

 Chapter 7. Reporting with Crystal Reports 429

http://support.businessobjects.com/documentation/product_guides/default.asp

3. Select IBM DB2 ODBC Driver, and click Finish, as shown in Figure 7-1.

Figure 7-1 Selecting IBM DB2 ODBC Driver

4. Enter the appropriate information for Data source name and Database alias.
See Figure 7-2. Click the Add button on the right.

Figure 7-2 Creating ODBC connection

430 Tivoli Management Services Warehouse and Reporting

5. Enter the connection information as shown in Figure 7-3 and Figure 7-4 on
page 432.

Figure 7-3 Data Source tab

 Chapter 7. Reporting with Crystal Reports 431

After you enter the information, click OK.

Figure 7-4 TCP/IP tab

432 Tivoli Management Services Warehouse and Reporting

Your connection is created like the one shown in Figure 7-5.

Figure 7-5 Successful creation of an ODBC data source

7.2.3 Creating a data source in the report

After you establish a database connection between your local machine and the
warehouse, you must let Crystal Reports know your data source.

When you choose to create a new report, a prompt opens and you have to select
the data source. You can either select DB2 Unicode or ODBC (RDO),
depending on what you chose early on.

Tip: It is a good practice to have consistent data source name (DSN)
throughout machines accessing the reports for the same connection. This is to
avoid remapping or re-creating database connections in various
environments.

Note: Each report requires you to define the data source.

 Chapter 7. Reporting with Crystal Reports 433

DB2 Unicode
To set up the DB2 connection information, perform the following steps:

1. Double-click DB2 Unicode to select this as data source, as shown in
Figure 7-6.

Figure 7-6 Selecting DB2 Unicode

434 Tivoli Management Services Warehouse and Reporting

2. Enter the connection information and click Finish, as shown in Figure 7-7.

Figure 7-7 Entering the connection information

 Chapter 7. Reporting with Crystal Reports 435

Figure 7-8 shows the successful creation of a native DB2 data source named
WAREHOUS.

Figure 7-8 Successful creation of a native DB2 data source named WAREHOUS

436 Tivoli Management Services Warehouse and Reporting

ODBC (RDO)
After you create an ODBC connection between your local machine and the
warehouse, you have to let Crystal Reports know that this connection exists by
identifying it.

1. Select ODBC (RDO) in the window shown in Figure 7-6 on page 434.

2. The ODBC (RDO) window opens, as shown in Figure 7-9. Select the DSN
that you created previously.

Figure 7-9 Selecting the DSN that you previously created

 Chapter 7. Reporting with Crystal Reports 437

3. Enter the connection information, and click Finish, as shown in Figure 7-10.

Figure 7-10 Entering the connection information

438 Tivoli Management Services Warehouse and Reporting

Figure 7-11 shows the successful creation of an ODBC data source named
ITM_reporting.

Figure 7-11 Successful creation of an ODBC data source named ITM_reporting

Tip: After you create your connection, you might want to add it to Favorites. To
do this, right-click the connection and select Add to Favorites. This makes
your data connection easily accessible.

 Chapter 7. Reporting with Crystal Reports 439

7.2.4 Report creation: CPU Usage by Host

In this section, we create a sample report titled CPU Usage by Host.

1. As a continuation after you select a data source (which is a particular
warehouse), select the specific table that you want to report from. In this case,
select Linux_CPU, as shown in Figure 7-12. Click Next.

Figure 7-12 Expanding tables and selecting Linux_CPU

440 Tivoli Management Services Warehouse and Reporting

2. The window shown in Figure 7-13 opens. Select the fields that you want to
display in your report and click Next.

Figure 7-13 Selecting the fields that you want to display in your report

 Chapter 7. Reporting with Crystal Reports 441

3. Select the grouping that you want in your report and the sort order, as shown
in Figure 7-14. Click Next.

Figure 7-14 Selecting the grouping and sort order

442 Tivoli Management Services Warehouse and Reporting

4. The window shown in Figure 7-15 opens. Select the metrics to be
summarized and the aggregation type. Click Next.

Figure 7-15 Selecting the metrics to be summarized and selecting the aggregation type

 Chapter 7. Reporting with Crystal Reports 443

5. The group sorting window opens, as shown in Figure 7-16. The grouping
order shows three options: None, Top 5 groups, Bottom 5 groups. Select the
kind of group ordering that you want and click Next.

Figure 7-16 Group sorting

444 Tivoli Management Services Warehouse and Reporting

6. The chart option window opens, as shown in Figure 7-17. Select the kind of
chart that you want and select the appropriate fields. Click Next.

Figure 7-17 Selecting chart options

 Chapter 7. Reporting with Crystal Reports 445

7. The window shown in Figure 7-18 opens. Do not set any filter this time. Click
Next.

Figure 7-18 Record Selection window

446 Tivoli Management Services Warehouse and Reporting

8. In the window shown in Figure 7-19, you can select No Template for default
or select your own template. Click Finish.

Figure 7-19 Selecting the template for the report

 Chapter 7. Reporting with Crystal Reports 447

You can see the report that is created, as shown in Figure 7-20.

Figure 7-20 Automatically generated report

The chart in the report is automatically drillable to each SYSTEM_NAME, where
a more detailed report of each system is shown under the appropriate system
name.

In this case, the TIMESTAMP field is not in a human-readable format, therefore
we have to convert this field to a more meaningful and useful field.

Converting TIMESTAMP field
At this point, you have created a simple report. To do further reporting based on
date, you have to convert the string field TIMESTAMP into a human-readable
string or a datetime field.

There are two options for converting the fields in Crystal Reports: One is by
creating a Formula Field and the other is SQL Expression Field. The main

448 Tivoli Management Services Warehouse and Reporting

difference between these two is that SQL Expression Field uses database
syntax, and Formula Field uses Basic and Crystal Syntax to do more dynamic
data manipulation.

In this specific instance, we recommend that you use the SQL Expression Field
to create the new TIMESTAMP fields. This will use Crystal Reports’ ability to
process data in a page on-demand basis.

To create a new SQL Expression Field, perform the following steps:

1. Select View and select Field Explorer.

2. The window shown in Figure 7-21 opens. Right-click SQL Expression Fields
and select New.

Figure 7-21 Selecting new SQL Expression Field

3. Select SQL Expression Fields and enter an SQL that:

a. Converts the string field TIMESTAMP into a human-readable format string

You can use the following sample syntax to convert the TIMESTAMP field
into a readable format. This syntax translate the TIMESTAMP field to a
human-readable format.

From: 1061024164012000

To: 20061024:1640:12000

'20' || substr("Linux_CPU"."Timestamp",2,6) || ':' ||
substr("Linux_CPU"."Timestamp",8,4) || ':' ||
substr("Linux_CPU"."Timestamp",12,5)

b. Converts the string field TIMESTAMP into a datetime

 Chapter 7. Reporting with Crystal Reports 449

You can use the following sample syntax to convert the TIMESTAMP field
into datetime format. This syntax translate the TIMESTAMP field to
datetime format:

From: 1061024164012000

To: 20061024164012 (System default: “10/24/2006 4:40:12PM”)

timestamp('20' || substr("Linux_CPU"."Timestamp",2,6) ||
substr("Linux_CPU"."Timestamp",8,6))

After you create these SQL Expression Fields, as shown in Figure 7-22, you
can dynamically use these fields according to your requirements.

Depending on what you want to do with TIMESTAMP, a datetime or a string
field can prove to be more beneficial. If you want to automatically aggregate
or group the field by day, hour, week, and so on, the datetime field does it
automatically for you. Alternatively, if want the report to treat your data as is, a
string field is more convenient in this case.

Figure 7-22 Two SQL Expression Fields created: Timestamp, Timestamp_STR

450 Tivoli Management Services Warehouse and Reporting

4. Replace the database field Linux_CPU.Timestamp with the SQL expression
%Timestamp in the report details. You see the automatic conversion into
system default format for datetime, as shown in Figure 7-23.

Figure 7-23 Timestamp as a datetime field automatically formatted into system default format

Adding a filter or a parameter in Crystal Reports
After you create the SQL Expression Fields, %Timestamp and
%Timestamp_STR, you can now use these as filters or parameters in the report.
Filters and Parameters limit the number of records returned to the client while
running the report. Filters are defined by the report designers, but the
parameters’ value is an input from the user.

In this specific sample, use a filter that limits the record selection to
LastFullMonth.

 Chapter 7. Reporting with Crystal Reports 451

1. To do this, select Report in the menu and select Select Expert, as shown in
Figure 7-24.

Figure 7-24 Filtering record selection using Select Expert to pick the fields to filter

452 Tivoli Management Services Warehouse and Reporting

2. Under Report Fields, select %Timestamp, as shown in Figure 7-25.

Figure 7-25 Selecting Timestamp SQL Expression Field

3. In the Select Expert window, select is in the period and LastFullMonth, as
shown in Figure 7-26.

Figure 7-26 %Timestamp is in the period LastFullMonth

This limits the record selection based on the datetime SQL Expression Field
%Timestamp LastFullMonth.

 Chapter 7. Reporting with Crystal Reports 453

You can find other Crystal built-in time-related commands in help, categorized
under Date Ranges Functions, as shown in Figure 7-27.

Figure 7-27 Date ranges functions available in Crystal Reports XI

Showing SQL of the report
To check and make sure that the data you are selecting is appropriate, you can o
check the SQL used by the report. Select Database in the menu and select
Show SQL Query. The Show SQL Query opens, as shown in Figure 7-28.

454 Tivoli Management Services Warehouse and Reporting

Figure 7-28 SQL Query of the report

Inserting a group in Crystal Reports
Groups make a report more meaningful by aggregating data in certain ways. In
this case, it makes sense to group the data by Linux_CPU.System_Name.

1. To insert a group, click Insert and select Group, as shown in Figure 7-29.

Figure 7-29 Inserting a group in the report

 Chapter 7. Reporting with Crystal Reports 455

2. Select a field for grouping, and then select the sort order, as shown in
Figure 7-30.

Figure 7-30 Selecting a field for grouping and the sort order

By this time, you have learned how to manually insert a group. You can insert
groups as required for your report.

Creating a chart
Charts are visual illustration of how your data looks like. These can be
dynamically created and tailored based on how you want to see the data. In this
example, we create a chart to show %Timestamp_STR on the x-axis and metrics
such as User_CPU, Sytem_CPU, and Wait_IO_CPU on the y-axis.

We use %Timestamp_STR to show each interval as it is in the warehouse. We
do not want Crystal Reports to recognize it as a datetime or convert to a datetime
field. In some cases, it is useful to use the %Timestamp, a datetime field, to do
aggregations daily, weekly, monthly, quarterly, or yearly.

1. To insert a chart, click Insert and select Chart. Place this chart in
GroupHeader1 area of the Design tab as shown in Figure 7-31.

456 Tivoli Management Services Warehouse and Reporting

Figure 7-31 Group Header #1 area on the right side of the window

2. The Chart Expert window opens. In the Type tab, select Stacked Bar Chart.
In the Data tab, select %Timestamp_STR and the appropriate metrics, as
shown in Figure 7-32. Click OK.

Figure 7-32 Chart Expert showing %Timestamp_STR and metrics

 Chapter 7. Reporting with Crystal Reports 457

Your chart is displayed in the Preview tab, as shown in Figure 7-33.

Figure 7-33 Bar chart representation of data

458 Tivoli Management Services Warehouse and Reporting

7.2.5 Report creation: Disk Usage

In this section, we create a sample report titled Disk Usage.

1. From File → New → Standard Report, you can start to create a new report.
Select your data source. For this particular report, we select Disk_D under
Tables, as shown in Figure 7-34.

Figure 7-34 Selecting table Disk_D for this report

 Chapter 7. Reporting with Crystal Reports 459

2. Select the fields that you want to show in the Details section of the report, as
shown in Figure 7-35. These are the columns that you want to see on each
row generated by the report. Click Next.

Figure 7-35 Selecting the fields to show in the report

460 Tivoli Management Services Warehouse and Reporting

3. Select the grouping. In this case, we want the data to be grouped by
System_Name, by LAT_Mount_Point, and then by WRITETIME, as shown in
Figure 7-36.

We also have to convert the WRITETIME field to a readable format. We do
this later when we finish this wizard.

Click Next.

Figure 7-36 Inserting groups and sorting in ascending order

 Chapter 7. Reporting with Crystal Reports 461

4. In the Summarized Fields, ensure that the appropriate aggregations are
selected, as shown in Figure 7-37.

Figure 7-37 Selecting appropriate aggregation for the Summarized Fields

462 Tivoli Management Services Warehouse and Reporting

Go through the steps in the wizard and select the appropriate options by
clicking Next, Finish, or both. After you complete the steps, a report is
automatically created for you, as shown in Figure 7-38.

Figure 7-38 Disk Usage report

5. At this point, we create an SQL Expression Field to convert WRITETIME to a
readable format. To convert WRITETIME field, see “Converting TIMESTAMP
field” on page 448.

 Chapter 7. Reporting with Crystal Reports 463

When this is successfully done, the Field Explorer shows the SQL Expression
Fields, as shown in Figure 7-39.

Figure 7-39 Successful creation of Writetime and Writetime_STR

6. You can now replace the WRITETIME database field in the report with
%Writetime, as shown in Figure 7-40.

Figure 7-40 Replacing the database field WRITETIME with %Writetime

464 Tivoli Management Services Warehouse and Reporting

To create a manual grouping for %Writetime, see “Inserting a group in Crystal
Reports” on page 455.

7. Select %Writetime and select for each day, as shown in Figure 7-41.

Figure 7-41 Selecting %Writetime and for each day

Instead of selecting for each day, you can also select that by week, month,
quarter, or year. This adds to the versatility of your report.

To add a chart, see “Creating a chart” on page 456.

 Chapter 7. Reporting with Crystal Reports 465

8. In the Chart Expert window, select the group layout and click OK, as shown in
Figure 7-42.

Figure 7-42 Selecting group layout

466 Tivoli Management Services Warehouse and Reporting

9. Edit and format the report as required. A sample report is shown in
Figure 7-43.

Figure 7-43 Bar chart representation with text details

 Chapter 7. Reporting with Crystal Reports 467

Figure 7-44 shows the details of the generated report.

Figure 7-44 Details of the generated report

468 Tivoli Management Services Warehouse and Reporting

The output of the report is a .rpt file. There are a lot of options to export a
report, as shown in Figure 7-45.

Figure 7-45 Export dialog box

We created two sample reports that can be useful for you. For more details about
creating reports, see your software version’s User’s Guides documented with
your product or available online:

http://support.businessobjects.com/documentation/product_guides/default
.asp

 Chapter 7. Reporting with Crystal Reports 469

http://support.businessobjects.com/documentation/product_guides/default.asp

470 Tivoli Management Services Warehouse and Reporting

Chapter 8. Troubleshooting

In this chapter, we discuss troubleshooting of various components of the Tivoli
Data Warehouse V2.1. We cover the following topics:

� “Warehouse Proxy agent” on page 472

� “Summarization and Pruning agent” on page 475

� “RDBMS troubleshooting” on page 476

8

© Copyright IBM Corp. 2007. All rights reserved. 471

8.1 Warehouse Proxy agent

The best way to troubleshoot any problems with the Warehouse Proxy agent is
to check the log files. It might be necessary to increase the trace level of these
files to track down the problem:

� Log files

– Warehouse Proxy agent logs

• hostname_hd_nnnnnnnnnn.log (WPA Agent)
• hostname_hd_java_nnnnnnn.log (WPA running on AIX or Linux)
• hostname_Warehouse.LG0 (Operation log)

– TEMS log

hostname_ms_nnnnnnnn.log

– Agent log

hostname_pc_nnnnnnnn.log

� Trace levels

– Warehouse Proxy agent RAS1 trace

• No error tracing: -none-

• General error tracing: ERROR

• App state tracing: ERROR (UNIT:khdx STATE ERROR)

• App and Framework ops: ERROR (UNIT:khdx STATE ERROR)
(UNIT:kra STATE ERROR)

• Detail error tracing: ERROR (UNIT:khd ALL)

• Maximum error tracing: ERROR (UNIT:khd ALL) (UNIT:kra ALL)

• Maximum error tracing for the Java trace: ERROR (UNIT:khdjdbc1
ALL)

– Binary files RAS1 trace

• Location varies depending on how data collection is configured
• TEMS: ERROR (UNIT:kpxhsloc ALL) (UNIT:krabhsco ALL)
• Agent: ERROR (UNIT:kra ALL)

472 Tivoli Management Services Warehouse and Reporting

8.1.1 Environments with multiple Warehouse Proxy agents

We provide some tasks to ensure that environments with multiple Warehouse
Proxy agents work properly:

� Be sure that all Warehouse Proxy agents are configured to use the hub Tivoli
Enterprise Monitoring Server as their parent

� If each Warehouse Proxy agent is only assigned a subset of Tivoli Enterprise
Monitoring Server instances, then ensure that the
KHD_WAREHOUSE_TEMS_LIST variable is correctly set in the ENV file for
the Warehouse Proxy agent (khdenv on Windows and hd.ini for Linux or
UNIX)

� To decrease the amount of time that it takes for the Warehouse Proxy agent
to determine which Tivoli Enterprise Monitoring Server it is associated with
(default is one hour), add the KPX_WAREHOUSE_REGCHK variable to the
TEMS ENV file and set it to a number less than 60 minutes.

KPX_WAREHOUSE_REGCHK=5

� To verify that the Warehouse Proxy agent registers with the hub and places
the correct entries into the global location broker, use the following RAS1
trace settings for the Warehouse Proxy agent:

RAS1= ERROR (UNIT: khdxrpcr STATE)

This setting prints the value of KHD_WAREHOUSE_TEMS_LIST and shows
any errors that are associated with its components.

� To determine which Warehouse Proxy a particular Tivoli Enterprise
Monitoring Server selects for its agents, enable the following RAS1 trace:

RAS1=ERROR (UNIT: khxrwhpx STATE)

This setting prints entries in the Tivoli Enterprise Monitoring Server RAS log
whenever a registration change occurs and indicates the name of the address
of the new Warehouse Proxy agent after the change.

8.1.2 Problems and solutions

This section documents some problems and also some steps to determine the
cause and the possible solutions.

 Chapter 8. Troubleshooting 473

No historical data collected
The following list provides some of the things to check if historical data is not
being populated into the Tivoli Data Warehouse database:

� Check whether the Warehouse Proxy agent is up and running. You can use
the Manage Tivoli Enterprise Monitoring Services window for this purpose. If
the Warehouse Proxy agent is not working, right-click the Warehouse Proxy
agent and choose Start.

� Check the heartbeat event on the TEMS log.

� On Windows, check the Application log in the Event Viewer.

� Check whether the connection to the warehouse DB is up:

– Warehouse Proxy agent log: hostname_hd_nnnnnnnn.log

• Good entry: Using Datasource: “ITM Warehouse” and Connection
with Datasource “ITM Warehouse” successful

• Bad entry: Attempt to connect with ODBC Datasource “ITM
Warehouse” User “ITMUser” failed!

� If you are expecting data as a result of a specific situation, check that the
situation has started.

� Check that the attribute group is configured for data collection and the
collection has started.

� Check data insertion into Warehouse table:

– Warehouse Proxy agent Operational Log file: hostname_Warehouse.LG0

� Check for export errors:

– Agent or TEMS log depending on location of history files:

• Good entry: Export Status 0 Received from Server for object
<WTMEMORY> and Export request for object <NT_Memory> is
successful.

• Bad entry: Export for object <TCP_Statistics> failed, Status = 73

– Export status return codes:

• 20: ODBCError
• 26: Metafile Not Found
• 27: Metafile IO Error
• 30: History File Not Found
• 49: RPC Error
• 53: Server Died
• 73: Warehouse Proxy Not Registered
• 216: ServerTimeout

474 Tivoli Management Services Warehouse and Reporting

Binary file size grows indefinitely
From time to time you might notice the sizes of binary files do not decrease:

� Cause: The connection with the Warehouse is not working.

� Solution: The connection is not working because of an error in the Open
Database Connectivity (ODBC) driver or ODBC connection.

� Cause: There is an error in the export process from the Tivoli Enterprise
Monitoring Server or agent.

� Solution: Reconfigure the ODBC connection.

� Cause: Location of the Warehouse Proxy agent is not known.

� Solution: Reconfigure the Warehouse Proxy agent.

Wait an hour for the location to be provided to the agent.

8.2 Summarization and Pruning agent

The best way to troubleshoot any problems with the Summarization and Pruning
agent is to check the log files. It might be necessary to increase the trace level of
these files to track down the problem:

� Logs files

– hostname_sy_nnnnnnnnn.log
– hostname_sy_java_nnnnnnn.log
– KSYRAS1_cfg.log

� Trace levels

– No error tracing: -none-
– General error tracing: ERROR
– Agent startup errors: ERROR (UNIT:ksz ALL)
– Detailed trace level: ERROR (UNIT: ksyn ALL): Where n=1-5

• 1 - Medium level trace for summarization
• 2 - Connection level trace
• 3 - Statement level trace
• 4 - ResultSet level trace
• 5 - Column value level trace

 Chapter 8. Troubleshooting 475

8.2.1 Problems and solutions

This section documents some problems and their possible solutions:

� Summarized tables are not created in the data warehouse

Cause: This usually means that the application support for the Summarization
and Pruning agent is not installed in the Tivoli Enterprise Monitoring Server.

Solution: Add the Summarization and Pruning agent support to the Tivoli
Enterprise Monitoring Server:

– Windows: Select Tivoli Enterprise Monitoring Server, right-click, and
browse to Advanced → Add application support to the TEMS.

– Linux/AIX: itmcmd support -t tems_name sy

� Summarization and Pruning agent throws an exception when connecting to
Tivoli Enterprise Portal Server

Cause: The Summarization and Pruning agent is incorrectly configured to
look for the Tivoli Enterprise Portal Server on localhost when, in fact, the
Tivoli Enterprise Portal Server is on a different machine.

Solution: Reconfigure the Summarization and Pruning agent. In the Sources
tab of the Configure Summarization and Pruning Agent graphical user
interface (GUI), enter the correct name in the TEP Server Host field at the
bottom (the default port of 1920 is probably fine, but adjust that accordingly, if
the Tivoli Enterprise Portal Server is configured to use a different port).

� The Summarization and Pruning agent does not prune data for systems that
are no longer managed

Solution: A database administrator has to manually remove the detailed data
and summarized data that was collected from removed managed systems
from the appropriate Tivoli Data Warehouse tables (looking for _D, _H, and
so on).

8.3 RDBMS troubleshooting

In this section, we discuss troubleshooting of DB2, Oracle, and Microsoft SQL
Server.

8.3.1 DB2

In this section, we discuss troubleshooting of DB2 including some error
messages that you might encounter when you work with DB2.

476 Tivoli Management Services Warehouse and Reporting

Network problems
When working with the DB2 database, you might get networking-related
messages. Example 8-1 shows one such message.

Example 8-1 Network problems: Example 1

SQL1013N The database alias name or database name "DSNBAT2" could not
be found. SQLSTATE=42705

� Cause: The database is not cataloged in the machine trying to connect to the
DB2 server or the catalog information that is provided is incorrect.

� Solution: Perform the following steps:

a. Double-check the spelling.

b. Check whether the database name exists in the database directory. You
can do this by using the command shown in Example 8-2 to display all
database names that are cataloged in the environment:

Example 8-2 List database directory

db2 => list database directory

 System Database Directory

 Number of entries in the directory = 12

Database 1 entry:

 Database alias = MWNCDSNB
 Database name = MWNCDSNB
 Node name = NDE7A97E
 Database release level = a.00
 Comment = PDT_PROD
 Directory entry type = Remote
 Catalog database partition number = -1
 Alternate server hostname =
 Alternate server port number =
...

c. If the database name exists, then double-check whether the database
name you gave is the correct one for the server you are trying to access.
You can do this by using the command shown in Example 8-3 to display all
the nodes that are cataloged in the environment.

 Chapter 8. Troubleshooting 477

Example 8-3 List node directory command

db2 => list node directory

 Node Directory

 Number of entries in the directory = 10

Node 1 entry:

Node name = NDE7A97E
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = bldbmsa.boulder.ibm.com
 Service name = 5031

You might encounter a network problem similar to Example 8-4.

Example 8-4 Network problems: Example 2

SQL30081N A communication error has been detected. Communication
protocol being used: "TCP/IP". Communication API being used:
"SOCKETS". Location where the error was detected: "". Communication
function detecting the error: "gethostbyname". Protocol specific error
code(s): "*", "11004", "*". SQLSTATE=08001

� Cause: The host name cataloged for that database is not found.

� Solution: Perform the following steps:

a. Ping the server that you are trying to access to determine whether the
problem is just a networking problem or is your catalog information.

b. If the ping command shows you that the server is reachable, then you
have to double-check the host name provided in the catalog. You can do
this by using the command shown in Example 8-5 to display all the nodes
that are cataloged in the environment.

Example 8-5 List node directory command

db2 => list node directory

 Node Directory

 Number of entries in the directory = 10

478 Tivoli Management Services Warehouse and Reporting

Node 1 entry:

Node name = NDE7A97E
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = bldbmsa.boulder.ibm.com
 Service name = 5031

Querying problems
When you run queries against the DB2 database, you might get a message
similar to Example 8-6.

Example 8-6 Querying problems: Example 1

SQL30082N Attempt to establish connection failed with security reason
"24" ("USERNAME AND/OR PASSWORD INVALID"). SQLSTATE=08001

� Cause: Typically the error SQL30082 indicates that either the user name is
not a recognized user name or that the password is incorrect. However, you
must first check the security reason to be sure, because there are 41 different
reasons. This task is made easier, because in the error description you can
also find the security reason description.

� Solution: Double-check the spelling of your password and user ID, and
ensure that you are using the proper case in password, because it is
case-sensitive.

Example 8-7 shows another example of a querying problem.

Example 8-7 Querying problems: Example 2

SQL0204N "DENISV.EMPLOYEE2" is an undefined name. SQLSTATE=42704

� Cause: DB2 did not find any table or view named in the implicit schema or the
explicit schema name that you gave it.

� Solution: Double-check the spelling of the object, and check with your
database administrator (DBA) if the tables were created with mixed case. If
so, you have to write the table name between “ ” (quotation marks) just as it
was created.

It is a good practice to use the full qualified name that includes the schema
name and the table name, because you might be writing the correct table
name, but the table does not exist in the implicit schema name, which is the
same schema as the user ID logged on.

 Chapter 8. Troubleshooting 479

You might encounter the querying problem shown in Example 8-8.

Example 8-8 Querying problems: Example 3

SQL0206N "MANAGER2" is not valid in the context where it is
used.SQLSTATE=42703

� Cause: DB2 did not find any column or column’s alias that matches what you
wrote in the select statement.

� Solution: Double-check the spelling of the column, and check with your DBA if
the table’s columns were created with mixed case. If so, you have to write the
column name between “ ” (quotation marks) just as they were created.

You might encounter the querying problem shown in Example 8-9.

Example 8-9 Querying problems: Example 4

SQL1040N The maximum number of applications is already connected to the
database. SQLSTATE=57030

� Cause: The DB2 message in Example 8-9 indicates that the value of the DB2
database configuration parameter maxappls has been reached.

� Solution: Check how many applications are connected to your database, and
check if they are correct. You can list them using the LIST APPLICATIONS
command shown in Example 8-10.

Example 8-10 LIST APPLICATIONS command

DB2 LIST APPLICATIONS

Auth Id Application Appl. Application Id DB # of
 Name Handle Name Agents
------- ----------- ------ ----------------------- ------ -----
DENISV db2bp.exe 9 *LOCAL.DB2.061103202432 SAMPLE 1
DENISV db2bp.exe 8 *LOCAL.DB2.061103202251 SAMPLE 1

If the applications are okay, you have to change the MAXAPPLS
configuration, you might set a specific number between 1 and 60 000, or just
set to automatic, which is the preferred option:

update db cfg for sample using maxappls automatic

You might encounter the querying problem shown in Example 8-11.

480 Tivoli Management Services Warehouse and Reporting

Example 8-11 Querying problems: Example 5

SQL0668N Operation not allowed for reason code reason-code on table
table-name. SQLSTATE=57016

� Cause: You have created a materialized query table (MQT) as refresh
deferred, and have not refreshed it since the creation of this table.

� Solution: You have to refresh the MQT. To do so, you must use the refresh
table command. Example 8-12 shows more details.

Example 8-12 Refreshing an MQT table

select * from mqt.disk_usage
Result:

DAY SERVER_NAME DISK_NAME MAX_PERCENT_USED AVG_FREE_MEGABYTES
----- --------------- --------- ---------------- ------------------
Error: SQL0668N Operation not allowed for reason code "1" on table
"MQT.DISK_USAGE". SQLSTATE=57016 (State:57016, Native Code: FFFFFD64)

refresh table mqt.disk_usage;

select * from mqt.disk_usage
Result:

DAY SERVER_NAME DISK_NAME MAX_PERCENT_USED AVG_FREE_MEGABYTES
------- ----------------- --------- ---------------- ------------------
1060919 Primary:BERLIN:NT C: 36 24316,83
1060919 Primary:BERLIN:NT C: 36 24318,00

You might encounter the querying problem shown in Example 8-13.

Example 8-13 Querying problems: Example 6

SQL20058N The fullselect specified for the materialized query table
table-name is not valid. Reason code = reason-code.

� Cause: The materialized query table definition has specific rules regarding
the contents of the fullselect. Therefore, depending on the reason code, you
might have to change the MQT definition a lot.

� Solution: Example 8-14 shows that the problem is reason code 4, which
states that the fullselect must not contain references to functions that are
defined as LANGUAGE SQL, CONTAINS SQL, READS SQL DATA, or

 Chapter 8. Troubleshooting 481

MODIFIES SQL DATA. In this case, the only solution is to remove the
function from the definition.

Example 8-14 Error while creating a MQT

create table mqt.disk_usage
 (Day,Server_Name,Disk_Name,Max_Percent_Used,AVG_Free_Megabytes)
as (select WRITETIME,
 "Server_Name",
 "Disk_Name",
 "MAX___Used",
 "AVG_Free_Megabytes"
 from DENISV.NT_Logical_Disk_D
 where "Server_Name" in ('Primary:FLORENCE:NT',
 'Primary:BERLIN:NT')
 and writetime > FIRST_DAY('LM'))
data initially deferred refresh deferred;

Error: SQL20058N The fullselect specified for the materialized query
table "MQT.DISK_USAGE" is not valid. Reason code = "4". SQLSTATE=428EC
(State:428EC, Native Code: FFFFB1A6)

Example 8-15 shows another example of a querying problem.

Example 8-15 Querying problems: Example 7

SQL1032N No start database manager command was issued. SQLSTATE=57019

� Cause: The DB2 database server was shut down or was not started.

� Solution: From the command line, you might run the DB2START command.

8.3.2 Oracle

In this section, we discuss troubleshooting of Oracle and some of the error
messages that you get when you work with Oracle.

Network problems
You might get networking-related messages when you work with the Oracle
database. Example 8-16 shows one such message.

Example 8-16 Network problems: Example 1

ORA-12154 ``TNS:could not resolve service name"

482 Tivoli Management Services Warehouse and Reporting

� Cause: This error indicates that the service (or TNS alias) specified when
trying to connect does not exist. TNS aliases or service names are defined
locally on each machine, because of this, different workstations might have a
completely different alias to refer to the same database.

� Solution: Double-check the spelling of the alias that you typed against the
ones that you have set up on your machine. To do so, look in the
TNSNAMES.ORA file.

Example 8-17 shows a network-related message example.

Example 8-17 Network problems: Example 2

ORA-12203 ``TNS:unable to connect to destination"

� Cause: There is something wrong with the host (server) name or IP address
that you are connecting to.

� Solution: Double-check the spelling of the alias that you typed against the
ones that you have set up on your machine. To do so, look in the
TNSNAMES.ORA file, and then double-check if the ADDRESS parameter
has all the information required and is correct.

You might encounter the network problem shown in Example 8-18.

Example 8-18 Network problems: Example 3

ORA-12535: TNS:operation timed out

� Cause: There is something wrong with the host (server) name or IP address
that you are connecting to.

� Solution: Try to ping the database that you are trying to access using the
TNSPING utility. If the output is timeout, try to ping the host name that is
provided in the output from the TNSPING utility, using the regular ping utility.
If both of the outputs show timeout, then the problem is a networking problem
and you have to solve it.

Querying problems
When you run queries against the Oracle database, you might get a message
similar to Example 8-19.

Example 8-19 Querying problems: Example 1

ORA-01017: Invalid username/password

 Chapter 8. Troubleshooting 483

� Cause: Usually this error indicates that either the user name is not a
recognized user name or that the password is incorrect.

� Solution:

– The user is not set up to use operating system authentication.

Check that the prefix used when defining the Oracle account is the same
as that specified by OS_AUTHENT_PREFIX in the init-ora file. The default
is OPS$.

– Check that the initialization parameter REMOTE_OS_AUTHET is explicitly
set to TRUE.

– If this error is encountered when a user name, password, or both are
specified, then the cause is likely to be one of the following reasons:

• Check that an Oracle account has been created for the specified user
name.

• Check that the Oracle account is not ‘OPS$...’. If it is, then Oracle is
using operating system authentication for the account. Try logging in
without specifying a user name or password. In this case, the NT
account name must be the same as the Oracle account name (less the
‘OPS$’).

• If the Oracle account exists and the account is not named 'OPS$...’,
then the password must be incorrect.

– If this error is encountered when trying to connect to Oracle as SYSOPER
(but connecting as NORMAL works fine), then the account lacks the
SYSOPER privilege. To obtain SYSOPER privilege, run Oracle security
manager and grant the system privilege SYSOPER to the Oracle account.

You might encounter the querying problem shown in Example 8-20.

Example 8-20 Querying problems: Example 2

ORA-00040: active time limit exceeded - call aborted or ORA-00041:
active time limit exceeded - session terminated

Note:

� The database must not be running in parallel server mode and the
password file must not be shared.

� If the database is running in parallel server mode or the password
file is shared, then only SYS or INTERNAL can have SYSOPER
privilege.

484 Tivoli Management Services Warehouse and Reporting

� Cause: The Resource Manager SWITCH_TIME limit was exceeded. This
parameter is used to limit how long a session can run without being
terminated.

� Solution: Your first option is to try to rewrite the SQL statement so that the
now high complex query can be changed to a low complex one. If that is not
the case, contact your DBA so that the DBA can be aware of the problem.
Work with the DBA and try to set a new limit to this parameter.

You might encounter the querying problem shown in Example 8-21.

Example 8-21 Querying problems: Example 3

ORA-01033: ORACLE initialization or shutdown in progress

� Cause: An attempt was made to log on while Oracle was being started up or
shut down.

� Solution: Wait a few minutes, and then retry the operation.

You might encounter the querying problem shown in Example 8-22.

Example 8-22 Querying problems: Example 4

ORA-01037: maximum cursor memory exceeded

� Cause: In this case, the cause is attempting to process a complex SQL
statement that consumed all available memory of the cursor.

� Solution: Your first option is to try to rewrite the SQL statement so that the
now high complex query can be changed to a low complex one. If that is not
the case, contact your DBA so that the DBA can be aware of the problem.
Work with the DBA and try to set a new limit.

You might encounter the querying problem shown in Example 8-23.

Example 8-23 Querying problems: Example 5

ORA-101045: User lacks create session privilege; logon denied

� Cause: Your account has not been given create session privileges; even if
your user ID has privileges to do selects on tables, it will not be able to
connect.

� Solution: Ask your DBA to grant create session privilege to the user ID,
otherwise you cannot log on.

You might encounter the querying problem shown in Example 8-24.

 Chapter 8. Troubleshooting 485

Example 8-24 Querying problems: Example 6

ORA-00028: your session has been killed

� Cause: A privileged user has killed your session and you are no longer
logged on to the database.

� Solution: Log in again if you want to continue working.

You might encounter the querying problem shown in Example 8-25.

Example 8-25 Querying problems: Example 7

ORA-00960: ambiguous column naming in select list

� Cause: A column name in the order-by list matches more than one select list
columns.

� Solution: Remove the duplicate column naming in the select list.

You might encounter the querying problem shown in Example 8-26.

Example 8-26 Querying problems: Example 8

ORA-03113 End-of-file on communication channel (Network connection
lost)

� Cause: Your connection with the DBMS was lost, probably a networking
problem.

� Solution: Try to log in back to gain access again to the database.

You might encounter the querying problem shown in Example 8-27.

Example 8-27 Querying problems: Example 9

ORA-03114 Not connected to ORACLE

� Cause: This usually happens when you try to run a command or SQL
statement after your session has been killed or lost.

� Solution: Connect again to gain access to the database and rerun your
command.

You might encounter the querying problem shown in Example 8-28.

Example 8-28 Querying problems: Example 10

ORA-00942 Table or view does not exist

486 Tivoli Management Services Warehouse and Reporting

� Cause: Oracle did not find any table or view named in the implicit schema or
the explicit schema name that you gave it.

� Solution: Double-check the spelling of the object, and check with your DBA if
the tables were created with mixed case. If so, you have to write the table
name between “ ” (quotation marks) just as it was created. It is a good
practice to use the full qualified name that includes the schema name and the
table name, because you might be writing the correct table name, but the
table does not exist in the implicit schema name, that is, the same schema as
the user ID logged on.

You might encounter the querying problem shown in Example 8-29.

Example 8-29 Querying problems: Example 11

ORA-01035: ORACLE only available to users with RESTRICTED SESSION
privilege

� Cause: Logins are disallowed because an instance started in restricted mode.
Only users with RESTRICTED SESSION system privilege can log on.

� Solution: Request that Oracle be restarted without the restricted option or
obtain the RESTRICTED SESSION system privilege.

8.3.3 Microsoft SQL Server

In this section, we discuss troubleshooting of MS SQL Server and some of the
error messages that you might get when working with MS SQL Server.

Network problems
You might get networking-related messages when you work with the MS SQL
Server database. The error messages shown in Example 8-30 through
Example 8-33 are generic, therefore we group them all together.

Example 8-30 Network problems: Example 1

General Network Error

Example 8-31 Network problems: Example 2

The specified SQL Server is not found

Example 8-32 Network problems: Example 3

SQL Server does not exist or access denied

 Chapter 8. Troubleshooting 487

Example 8-33 Network problems: Example 4

SQL Server is unavailable or does not exist

� Cause: The most common reasons for this error are:

– SQL Server is not running

– SQL Server is not listening on the protocol or port that you are using while
trying to connect

– You are using a different protocol on the client other than the one the
Server is set up for listening

– The host name that you are trying to connect does not exist

� Solution:

– Check the target server if the SQL Server is installed and running so that it
can accept connections.

Then check if the host name is correct and that the server is reachable
through the network. You can do this by using the ping utility.

– Check what protocol is set up on the server network utility. This is a tool
found on the server that tells the SQL Server what protocol the relational
relational database management system (RDBMS) should be listening
and in what port. After that check the client machine’s client network utility
to see whether the client is using the same protocol and is trying to
connect to the correct port.

Querying problems
When you run queries against the MS SQL Server, you might get a message
similar to Example 8-34.

Example 8-34 Querying problems: Example 1

Msg 916, Level 14, State 1 - The server principal "usera" is not able
to access the database "AdventureWorksDW" under the current security
context.

� Cause: Your user ID was not granted access to the database that you tried to
access.

� Solution: You have to grant access on the specified database to the user
trying to access it. To do this, use the following commands:

USE AdventureWorksDW
Exec sp_grantdbaccess 'usera'

You might encounter the querying problem shown in Example 8-35.

488 Tivoli Management Services Warehouse and Reporting

Example 8-35 Querying problems: Example 2

Msg 229, Level 14, State 5 - SELECT permission denied on object
'DimAccount', database 'AdventureWorksDW', schema 'dbo'.

� Cause: The user ID that is used to access the table lacks the SELECT
permission.

� Solution: You have to grant SELECT access to the table where the error
message was received. To grant access, use the following command:

GRANT SELECT on DimAccount to UserA

You might encounter the querying problem shown in Example 8-36.

Example 8-36 Querying problems: Example 3

Msg 911, Level 16, State 1 - Could not locate entry in sysdatabases for
database 'adventureworksd2'. No entry found with that name. Make sure
that the name is entered correctly.

� Cause: The database name written must be incorrect.

� Solution: Double-check the spelling and try again. All the database names
can be found in the sysdatabases table under the Master database.

You might encounter the querying problem shown in Example 8-37.

Example 8-37 Querying problems: Example 4

Msg 208, Level 16, State 1 - Invalid object name 'dimaccount2'.

� Cause: SQL Server did not find any table or view named in the implicit
schema or the explicit schema name that you gave it.

� Solution: Double-check the spelling of the object, and check with your DBA if
the tables were created with mixed case. If so, you have to write the table
name between “ ” (quotation marks) just as it was created. It is a good
practice to use the full qualified name that includes the schema name and the
table name, because you might be writing the correct table name, but the
table does not exist in the implicit schema name.

You might encounter the querying problem shown in Example 8-38.

Example 8-38 Querying problems: Example 5

Msg 1105, Level 17, State 2 - Could not allocate space for object
'dbo.teste2' in database 'oi' because the 'PRIMARY' filegroup is full.

 Chapter 8. Troubleshooting 489

� Cause: This message indicates that SQL Server cannot allocate space
because the filegroup is full.

� Solution: Check if your hard drives that are used by the filegroup are full. If so,
create disk space by deleting unnecessary files, dropping unused objects in
the filegroup, or adding additional files to the filegroup in different hard drives.

If the hard drive is not full, set the autogrowth parameter on for existing files in
the filegroup.

You might encounter the querying problem shown in Example 8-39.

Example 8-39 Querying problems: Example 6

Msg 9002, Level 17, State 4 - The transaction log for database 'oi' is
full.

� Cause: Your transaction log file is full, you receive the error message when a
transaction log file consumes the available disk space and cannot expand
any more, or it has reached the maximum size of the log file, in this case it
usually happens because the autogrowth parameter is off.

� Solution: You can set the autogrowth parameter on, if the hard drive where
the log file is located still has plenty of storage. If the hard drive is full, you
have to add a new log file to your database in another hard drive.

490 Tivoli Management Services Warehouse and Reporting

Appendix A. Example mdl file for the
Tivoli Storage Manager
Universal Agent scenario

This appendix provides an example mdl file for the Tivoli Storage Manager
Universal Agent for the scenario that we described in 5.3, “Warehousing data
using IBM Tivoli Monitoring 6.1 Universal Agent (ODBC provider)” on page 348.

A

© Copyright IBM Corp. 2007. All rights reserved. 491

Example mdl file for Tivoli Storage Manager Universal
Agent scenario

Example A-1 shows the mdl file, which is used for the scenario that we described
in 5.3, “Warehousing data using IBM Tivoli Monitoring 6.1 Universal Agent
(ODBC provider)” on page 348.

Example: A-1 Example mdl file

//APPL TSM
//NAME ACTLOG S 300 @Server activity log
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from ACTLOG
//ATTRIBUTES
DATE_TIME D 28 @Date/Time
MSGNO N 8 @Message number
SEVERITY D 4 @Message severity
MESSAGE D 256 @Message
ORIGINATOR D 20 @Originator
NODENAME D 64 @Node Name
OWNERNAME D 64 @Owner Name
SCHEDNAME D 32 @Schedule Name
DOMAINNAME D 32 @Policy Domain Name
SESSID N 8 @Sess Number
SERVERNAME D 64 @Server Name
SESSION N 8 @SESSION
PROCESS N 8 @PROCESS
//NAME ADMINS K 300 @Server administrators
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from ADMINS
//ATTRIBUTES
ADMIN_NAME D 64 KEY ATOMIC @Administrator Name
LASTACC_TIME D 28 @Last Access Date/Time
PWSET_TIME D 28 @Password Set Date/Time
CONTACT D 128 @Contact
LOCKED D 12 @Locked?
INVALID_PW_COUNT C 999999 @Invalid Sign-on Count
SYSTEM_PRIV D 80 @System Privilege
POLICY_PRIV D 100 @Policy Privilege
STORAGE_PRIV D 100 @Storage Privilege
ANALYST_PRIV D 80 @Analyst Privilege
OPERATOR_PRIV D 80 @Operator Privilege
CLIENT_ACCESS D 256 @Client Access Privilege
CLIENT_OWNER D 256 @Client Owner Privilege
REG_TIME D 28 @Registration Date/Time

492 Tivoli Management Services Warehouse and Reporting

REG_ADMIN D 64 @Registering Administrator
PROFILE D 256 @Managing profile
PASSEXP N 8 @Password Expiration Period
//NAME ADMIN_SCHEDULES K 300 @Administrative command schedules
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from ADMIN_SCHEDULES
//ATTRIBUTES
SCHEDULE_NAME D 32 KEY ATOMIC @Schedule Name
DESCRIPTION D 256 @Description
COMMAND D 256 @Command
PRIORITY C 999999 @Priority
STARTDATE D 12 @Start date
STARTTIME D 8 @Start time
DURATION N 8 @Duration
DURUNITS D 20 @Duration units
PERIOD N 8 @Period
PERUNITS D 20 @Period units
DAYOFWEEK D 20 @Day of Week
EXPIRATION D 12 @Expiration
ACTIVE D 12 @Active?
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
SCHED_STYLE D 12 @Schedule Style
ENH_MONTH D 52 @Month
DAYOFMONTH D 60 @Day of Month
WEEKOFMONTH D 52 @Week of Month
//NAME ARCHIVES S 300 @Client archive files
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from ARCHIVES
//ATTRIBUTES
NODE_NAME D 64 @Node Name
FILESPACE_NAME D 256 @Filespace Name
FILESPACE_ID N 28 @FSID
TYPE D 16 @Object type
HL_NAME D 256 @Client high-level name
LL_NAME D 256 @Client low-level name
OBJECT_ID N 20 @Server object ID for the client object
ARCHIVE_DATE D 28 @Date/time that the object was archived
OWNER D 64 @Client object owner
DESCRIPTION D 256 @Description
CLASS_NAME D 32 @Mgmt Class Name
//NAME AR_COPYGROUPS S 300 @Management class archive copy groups
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from AR_COPYGROUPS

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 493

//ATTRIBUTES
DOMAIN_NAME D 32 @Policy Domain Name
SET_NAME D 32 @Policy Set Name
CLASS_NAME D 32 @Mgmt Class Name
COPYGROUP_NAME D 32 @Copy Group Name
RETVER D 8 @Retain Version
SERIALIZATION D 32 @Copy Serialization
DESTINATION D 32 @Copy Destination
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
RETINIT D 8 @Retention Initiation
RETMIN N 8 @Retain Minimum Days
//NAME ASSOCIATIONS S 300 @Client schedule associations
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from ASSOCIATIONS
//ATTRIBUTES
DOMAIN_NAME D 32 @Policy Domain Name
SCHEDULE_NAME D 32 @Schedule Name
NODE_NAME D 64 @Associated Nodes
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
//NAME AUDITOCC K 300 @Server audit occupancy results
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from AUDITOCC
//ATTRIBUTES
NODE_NAME D 64 KEY ATOMIC @Node Name
BACKUP_MB N 8 @Backup Storage Used (MB)
BACKUP_COPY_MB N 8 @Backup Storage Used (MB)
ARCHIVE_MB N 8 @Archive Storage Used (MB)
ARCHIVE_COPY_MB N 8 @Archive Storage Used (MB)
SPACEMG_MB N 8 @Space-Managed Storage Used (MB)
SPACEMG_COPY_MB N 8 @Space-Managed Storage Used (MB)
TOTAL_MB N 8 @Total Storage Used (MB)
//NAME BACKUPS S 300 @Client backup files
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from BACKUPS
//ATTRIBUTES
NODE_NAME D 64 @Node Name
FILESPACE_NAME D 256 @Filespace Name
FILESPACE_ID N 28 @FSID
STATE D 16 @File state (active, inactive)
TYPE D 16 @Object type
HL_NAME D 256 @Client high-level name
LL_NAME D 256 @Client low-level name

494 Tivoli Management Services Warehouse and Reporting

OBJECT_ID N 20 @Server object ID for the client object
BACKUP_DATE D 28 @Date/time that the object was backed up
DEACTIVATE_DATE D 28 @Date/time that the object was deactivated
OWNER D 64 @Client object owner
CLASS_NAME D 32 @Mgmt Class Name
//NAME BACKUPSETS S 300 @Backup Set
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from BACKUPSETS
//ATTRIBUTES
NODE_NAME D 64 @Node Name
BACKUPSET_NAME D 256 @Backup Set Name
OBJECT_ID N 20 @Server object ID for the client object
DATE_TIME D 28 @Date/Time
RETENTION D 8 @Retention Period
DESCRIPTION D 256 @Description
DEVCLASS D 32 @Device Class Name
//NAME BU_COPYGROUPS S 300 @Management class backup copy groups
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from BU_COPYGROUPS
//ATTRIBUTES
DOMAIN_NAME D 32 @Policy Domain Name
SET_NAME D 32 @Policy Set Name
CLASS_NAME D 32 @Mgmt Class Name
COPYGROUP_NAME D 32 @Copy Group Name
VEREXISTS D 8 @Versions Data Exists
VERDELETED D 8 @Versions Data Deleted
RETEXTRA D 8 @Retain Extra Versions
RETONLY D 8 @Retain Only Version
MODE D 32 @Copy Mode
SERIALIZATION D 32 @Copy Serialization
FREQUENCY C 999999 @Copy Frequency
DESTINATION D 32 @Copy Destination
TOC_DESTINATION D 32 @Table of Contents (TOC) Destination
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
//NAME CLIENTOPTS S 300 @Client Options
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from CLIENTOPTS
//ATTRIBUTES
OPTIONSET_NAME D 68 @Optionset
OPTION_NAME D 68 @Option
SEQNUMBER N 8 @Sequence number
OPTION_VALUE D 256 @Option Value
FORCE D 4 @Use Option Set Value (FORCE)

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 495

OBSOLETE D 12 @Obsolete
WHEN_OBSOLETE D 12 @When Obsolete?
//NAME CLIENT_SCHEDULES S 300 @Client schedules
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from CLIENT_SCHEDULES
//ATTRIBUTES
DOMAIN_NAME D 32 @Policy Domain Name
SCHEDULE_NAME D 32 @Schedule Name
DESCRIPTION D 256 @Description
ACTION D 20 @Action
OPTIONS D 256 @Options
OBJECTS D 256 @Objects
PRIORITY C 999999 @Priority
STARTDATE D 12 @Start date
STARTTIME D 8 @Start time
DURATION N 8 @Duration
DURUNITS D 20 @Duration units
PERIOD N 8 @Period
PERUNITS D 20 @Period units
DAYOFWEEK D 20 @Day of Week
EXPIRATION D 12 @Expiration
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
SCHED_STYLE D 12 @Schedule Style
ENH_MONTH D 52 @Month
DAYOFMONTH D 60 @Day of Month
WEEKOFMONTH D 52 @Week of Month
//NAME CLOPTSETS K 300 @Client Option Sets
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from CLOPTSETS
//ATTRIBUTES
OPTIONSET_NAME D 68 KEY ATOMIC @Optionset
DESCRIPTION D 256 @Description
LAST_UPDATE_BY D 68 @Last Update by (administrator)
PROFILE D 256 @Managing profile
//NAME COLLOCGROUP S 300 @Collocation groups
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from COLLOCGROUP
//ATTRIBUTES
COLLOCGROUP_NAME D 32 @Collocation Group Name
DESCRIPTION D 256 @Description
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
NODE_NAME D 64 @Node Name

496 Tivoli Management Services Warehouse and Reporting

//NAME CONTENTS S 300 @Storage pool volume contents
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from CONTENTS
//ATTRIBUTES
VOLUME_NAME D 256 @Volume Name
NODE_NAME D 64 @Node Name
TYPE D 20 @Type
FILESPACE_NAME D 64 @Filespace Name
FILE_NAME D 256 @Client's Name for File
AGGREGATED D 20 @Aggregated?
FILE_SIZE N 20 @Stored Size
SEGMENT D 20 @Segment Number
CACHED D 20 @Cached Copy?
FILESPACE_ID N 8 @FSID
FILESPACE_HEXNAME D 64 @Hexadecimal Filespace Name
FILE_HEXNAME D 256 @Hexadecimal Client's Name for File
//NAME DATAMOVERS K 300 @Data Movers
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DATAMOVERS
//ATTRIBUTES
MOVER_NAME D 64 KEY ATOMIC @Data Mover Name
TYPE D 16 @Data Mover Type
HL_ADDRESS D 256 @IP Address
LL_ADDRESS D 256 @TCP/IP Port Number
USER_NAME D 64 @User Name
WWN D 16 @WWN
SERIAL D 64 @Serial Number
COPYTHREADS N 8 @Copy Threads
DATA_FORMAT D 32 @Storage Pool Data Format
ONLINE D 40 @On-Line
LAST_UPDATE_BY D 64 @Last Update by (administrator)
LAST_UPDATE D 28 @Last Update Date/Time
//NAME DB S 300 @Server database information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DB
//ATTRIBUTES
AVAIL_SPACE_MB N 8 @Available Space (MB)
CAPACITY_MB N 8 @Assigned Capacity (MB)
MAX_EXTENSION_MB N 8 @Maximum Extension (MB)
MAX_REDUCTION_MB N 12 @Maximum Reduction (MB)
PAGE_SIZE C 999999 @Page Size (bytes)
USABLE_PAGES N 8 @Total Usable Pages
USED_PAGES N 8 @Used Pages
PCT_UTILIZED N 4 @Pct Util
MAX_PCT_UTILIZED N 4 @Max. Pct Util

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 497

PHYSICAL_VOLUMES N 8 @Physical Volumes
BUFF_POOL_PAGES N 12 @Buffer Pool Pages
TOTAL_BUFFER_REQ N 12 @Total Buffer Requests
CACHE_HIT_PCT N 4 @Cache Hit Pct.
CACHE_WAIT_PCT N 4 @Cache Wait Pct.
BACKUP_RUNNING D 12 @Backup in Progress?
BACKUP_TYPE D 20 @Type of Backup In Progress
NUM_BACKUP_INCR C 999999 @Incrementals Since Last Full
BACKUP_CHG_MB N 4 @Changed Since Last Backup (MB)
BACKUP_CHG_PCT N 4 @Percentage Changed
LAST_BACKUP_DATE D 28 @Last Complete Backup Date/Time
DB_REORG_EST N 8 @Estimate of Recoverable Space (MB)
DB_REORG_EST_TIME D 28 @Last Estimate of Recoverable Space (MB)
//NAME DBBACKUPTRIGGER S 300 @Database backup trigger information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DBBACKUPTRIGGER
//ATTRIBUTES
DEVCLASS D 32 @Full Device Class
INCRDEVCLASS D 32 @Incremental Device Class
LOGFULLPCT C 999999 @Log Full Percentage
NUMICREMENTAL C 999999 @Incrementals Between Fulls
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 64 @Last Update by (administrator)
MININTERVAL C 999999 @Minimum Backup Interval (minutes)
MINLOGFREE C 999999 @Minimum Log Percentage Freed
//NAME DBSPACETRIGGER S 300 @Database space trigger information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DBSPACETRIGGER
//ATTRIBUTES
FULLPCT C 999999 @DB Full Percentage
EXPANSIONPCT C 999999 @DB Space Expansion Percentage
EXPANSION_PREFIX D 252 @DB Expansion prefix
MAXIMUM_DB_SIZE N 8 @DB Maximum Size (Megabytes)
MIRROR_PREFIX_1 D 252 @Mirror Prefix 1
MIRROR_PREFIX_2 D 252 @Mirror Prefix 2
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 64 @Last Update by (administrator)
//NAME DBVOLUMES S 300 @Database volumes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DBVOLUMES
//ATTRIBUTES
COPY1_NAME D 256 @Volume Name (Copy 1)
COPY1_STATUS D 20 @Copy Status
COPY2_NAME D 256 @Volume Name (Copy 2)
COPY2_STATUS D 20 @Copy Status

498 Tivoli Management Services Warehouse and Reporting

COPY3_NAME D 256 @Volume Name (Copy 3)
COPY3_STATUS D 20 @Copy Status
AVAIL_SPACE_MB N 8 @Available Space (MB)
ALLOC_SPACE_MB N 8 @Allocated Space (MB)
FREE_SPACE_MB N 8 @Free Space (MB)
//NAME DEVCLASSES K 300 @Device Classes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DEVCLASSES
//ATTRIBUTES
DEVCLASS_NAME D 32 KEY ATOMIC @Device Class Name
ACCESS_STRATEGY D 12 @Device Access Strategy
STGPOOL_COUNT N 8 @Storage Pool Count
DEVTYPE D 16 @Device Type
FORMAT D 16 @Format
CAPACITY D 40 @Est/Max Capacity
MOUNTLIMIT D 12 @Mount Limit
MOUNTWAIT N 8 @Mount Wait (min)
MOUNTRETENTION N 8 @Mount Retention (min)
PREFIX D 8 @Label Prefix
DRIVE D 4 @Drive Letter
LIBRARY_NAME D 32 @Library
DIRECTORY D 256 @Directory
SERVERNAME D 64 @Server Name
RETRYPERIOD N 8 @Retry Period
RETRYINTERVAL N 8 @Retry Interval
TWO_SIDED D 4 @Twosided
SHARED D 4 @Shared
HLADDRESS D 256 @HLAddr
MINCAPACITY D 40 @Minimum Capacity
WORM D 4 @WORM
SCALECAPACITY N 8 @Scaled Capacity
LAST_UPDATE_BY D 64 @Last Update by (administrator)
LAST_UPDATE D 28 @Last Update Date/Time
//NAME DISKS S 300 @Disks
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DISKS
//ATTRIBUTES
NODE_NAME D 64 @Node Name
DISK_NAME D 64 @Disk Name
WWN D 16 @WWN
SERIAL D 64 @Serial Number
ONLINE D 40 @On-Line
LAST_UPDATE_BY D 64 @Last Update by (administrator)
LAST_UPDATE D 28 @Last Update Date/Time
//NAME DOMAINS K 300 @Policy domains

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 499

//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DOMAINS
//ATTRIBUTES
DOMAIN_NAME D 32 KEY ATOMIC @Policy Domain Name
SET_LAST_ACTIVATED D 32 @Activated Policy Set
ACTIVATE_DATE D 28 @Activation Date/Time
DEFMGMTCLASS D 32 @Activated Default Mgmt Class
NUM_NODES N 8 @Number of Registered Nodes
BACKRETENTION C 999999 @Backup Retention (Grace Period)
ARCHRETENTION C 999999 @Archive Retention (Grace Period)
DESCRIPTION D 256 @Description
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update Date/Time
PROFILE D 256 @Managing profile
//NAME DRIVES S 300 @Drives
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRIVES
//ATTRIBUTES
LIBRARY_NAME D 32 @Library Name
DRIVE_NAME D 32 @Drive Name
DEVICE_TYPE D 16 @Device Type
ONLINE D 40 @On-Line
READ_FORMATS D 16 @Read Formats
WRITE_FORMATS D 16 @Write Formats
ELEMENT C 999999 @Element
ACS_DRIVE_ID D 16 @ACS DriveId
DRIVE_STATE D 40 @Drive State
ALLOCATED_TO D 64 @Allocated to
LAST_UPDATE_BY D 64 @Last Update by (administrator)
LAST_UPDATE D 28 @Last Update Date/Time
CLEAN_FREQ D 12 @Cleaning Frequency (Gigabytes/ASNEEDED/NONE)
DRIVE_SERIAL D 64 @Serial Number
VOLUME_NAME D 256 @Volume Name
//NAME DRMCSTGPOOLS S 300 @Copy storage pools managed by the disaster
recovery manager
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMCSTGPOOLS
//ATTRIBUTES
STGPOOL_NAME D 32 @Storage Pool Name
//NAME DRMEDIA S 300 @Physical volumes managed by move drmedia
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMEDIA
//ATTRIBUTES
VOLUME_NAME D 256 @Storage pool volumes
STATE D 20 @State

500 Tivoli Management Services Warehouse and Reporting

UPD_DATE D 28 @Last Update Date/Time
LOCATION D 256 @Location
STGPOOL_NAME D 32 @Storage Pool Name
LIB_NAME D 32 @Automated LibName
VOLTYPE D 12 @Volume Type
//NAME DRMMACHINE S 300 @Disaster recovery manager machine information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMMACHINE
//ATTRIBUTES
MACHINE_NAME D 64 @Machine Name
PRIORITY C 999999 @Machine Priority
BUILDING D 16 @Building
FLOOR D 16 @Floor
ROOM D 16 @Room
ADSM_SERVER D 4 @Server?
DESCRIPTION D 256 @Description
CHARACTERISTICS D 4 @Characteristics?
RECINSTRUCTIONS D 4 @Recovery Instructions?
//NAME DRMMACHINECHARS S 300 @Disaster recovery manager machine
characteristics
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMMACHINECHARS
//ATTRIBUTES
MACHINE_NAME D 64 @Machine Name
CHARACTERISTICS D 256 @Characteristics
//NAME DRMMACHINENODE S 300 @Disaster recovery manager machine node
associations
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMMACHINENODE
//ATTRIBUTES
MACHINE_NAME D 64 @Machine Name
NODE_NAME D 64 @Node Name
//NAME DRMMACHINERECINST S 300 @Disaster recovery manager machine
recovery instructions
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMMACHINERECINST
//ATTRIBUTES
MACHINE_NAME D 64 @Machine Name
RECINSTRUCTIONS D 256 @Recovery Instructions
//NAME DRMMACHINERECMEDIA S 300 @Disaster recovery manager machine
recovery media associations
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMMACHINERECMEDIA
//ATTRIBUTES
MACHINE_NAME D 64 @Machine Name

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 501

RECMEDIA_NAME D 32 @Recovery Media Name
//NAME DRMPSTGPOOLS S 300 @Primary storage pools managed by the
disaster recovery manager
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMPSTGPOOLS
//ATTRIBUTES
STGPOOL_NAME D 32 @Storage Pool Name
//NAME DRMRECOVERYMEDIA K 300 @Disaster recovery manager recovery
media
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMRECOVERYMEDIA
//ATTRIBUTES
RECMEDIA_NAME D 32 KEY ATOMIC @Recovery Media Name
TYPE D 8 @Type
LOCATION D 256 @Location
DESCRIPTION D 256 @Description
PRODUCT D 16 @Product
PRODUCT_INFO D 256 @Product Information
VOLUMES D 256 @Volume Names
//NAME DRMSRPF S 300 @Recovery plan files in source server
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMSRPF
//ATTRIBUTES
RPF_NAME D 256 @Recovery Plan File Name
NODE_NAME D 68 @Node Name
DEVCLASS_NAME D 32 @Device Class Name
TYPE D 36 @Recovery Plan File Type
MGMTCLASS_NAME D 32 @Mgmt Class Name
RPF_SIZE N 12 @Recovery Plan File Size
RPF_DELETE D 20 @Marked For Deletion
RPF_DELDATE D 28 @Deletion Date
//NAME DRMSTANZA S 300 @Recovery plan file stanza names
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMSTANZA
//ATTRIBUTES
STANZA_NAME D 256 @Stanza Name
//NAME DRMSTATUS S 300 @Disaster recovery manager status information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMSTATUS
//ATTRIBUTES
PLANPREFIX D 200 @Recovery Plan Prefix
INSTRPREFIX D 200 @Plan Instructions Prefix
PLANVPOSTFIX D 4 @Replacement Volume Postfix
NONMOUNTNAME D 256 @Not Mountable Location Name
COURIERNAME D 256 @Courier Name

502 Tivoli Management Services Warehouse and Reporting

VAULTNAME D 256 @Vault Site Name
DBBEXPIREDAYS N 8 @DB Backup Series Expiration Days
CHECKLABEL D 20 @Check Label?
FILEPROCESS D 20 @Process FILE Device Type?
CMDFILENAME D 256 @Command File Name
RPFEXPIREDAYS N 8 @Recovery Plan File Expiration Days
//NAME DRMTRPF S 300 @Recovery plan files in target server
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from DRMTRPF
//ATTRIBUTES
RPF_NAME D 256 @Recovery Plan File Name
NODE_NAME D 68 @Node Name
DEVCLASS_NAME D 32 @Device Class Name
TYPE D 36 @Recovery Plan File Type
MGMTCLASS_NAME D 32 @Mgmt Class Name
RPF_SIZE N 12 @Recovery Plan File Size
RPF_DELETE D 20 @Marked For Deletion
RPF_DELDATE D 28 @Deletion Date
//NAME EVENTS S 300 @Scheduled Event Results
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from EVENTS
//ATTRIBUTES
SCHEDULED_START D 28 @Scheduled Start
ACTUAL_START D 28 @Actual Start
DOMAIN_NAME D 32 @Policy Domain Name
SCHEDULE_NAME D 32 @Schedule Name
NODE_NAME D 64 @Node Name
STATUS D 12 @Status
RESULT N 8 @Result
REASON D 80 @Reason
//NAME FILESPACES S 300 @Client file spaces
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from FILESPACES
//ATTRIBUTES
NODE_NAME D 64 @Node Name
FILESPACE_NAME D 256 @Filespace Name
FILESPACE_ID N 28 @FSID
FILESPACE_TYPE D 32 @Filespace Type
CAPACITY N 20 @Capacity (MB)
PCT_UTIL N 20 @Pct Util
BACKUP_START D 28 @Last Backup Start Date/Time
BACKUP_END D 28 @Last Backup Completion Date/Time
DELETE_OCCURRED D 28 @Deletion occurred in Filespace Date/Time
UNICODE_FILESPACE D 12 @Is Filespace Unicode?
FILESPACE_HEXNAME D 256 @Hexadecimal Filespace Name

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 503

//NAME GROUP_MEMBER S 300 @Group Members
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from GROUP_MEMBER
//ATTRIBUTES
GROUP_NAME D 64 @Server Group
MEMBER_NAME D 64 @Members
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 64 @Last Update by (administrator)
//NAME LIBRARIES K 300 @Libraries
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from LIBRARIES
//ATTRIBUTES
LIBRARY_NAME D 32 KEY ATOMIC @Library Name
LIBRARY_TYPE D 12 @Library Type
ACS_ID N 8 @ACS Id
PRIVATE_CATEGORY N 8 @Private Category
SCRATCH_CATEGORY N 8 @Scratch Category
EXTERNAL_MGR D 256 @External Manager
RSM_MEDIATYPE D 64 @RSM Media Type
SHARED D 12 @Shared
LANFREE D 12 @LanFree
OBEYMOUNTRETENTION D 12 @ObeyMountRetention
PRIMARY_LIB_MGR D 64 @Primary Library Manager
AUTOLABEL D 24 @AutoLabel
LAST_UPDATE_BY D 64 @Last Update by (administrator)
LAST_UPDATE D 28 @Last Update Date/Time
LIBRARY_SERIAL D 64 @Serial Number
WORMSCRATCH_CAT N 8 @WORM Scratch Category
RESETDRIVES D 12 @Reset Drives
//NAME LIBVOLUMES S 300 @Library volumes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from LIBVOLUMES
//ATTRIBUTES
LIBRARY_NAME D 32 @Library Name
VOLUME_NAME D 256 @Volume Name
STATUS D 12 @Status
OWNER D 64 @Owner
LAST_USE D 12 @Last Use
HOME_ELEMENT N 20 @Home Element
CLEANINGS_LEFT N 12 @Cleanings Left
DEVTYPE D 4 @Device Type
MEDIATYPE N 12 @Media Type
OLD_STATUS D 12 @Orig Status
//NAME LICENSES S 300 @Server feature licenses
//SOURCE ODBC TSMODBC user=admin pswd=admin

504 Tivoli Management Services Warehouse and Reporting

//SQL Select * from LICENSES
//ATTRIBUTES
AUDIT_DATE D 28 @Last License Audit
ORACLE_ACT N 28 @Number of TDP for Oracle in use
ORACLE_TRYBUY N 28 @Number of TDP for Oracle in try buy mode
MSSQL_ACT N 28 @Number of TDP for MS SQL Server in use
MSSQL_TRYBUY N 28 @Number of TDP for MS SQL Server in try buy
mode
MSEXCH_ACT N 28 @Number of TDP for MS Exchange in use
MSEXCH_TRYBUY N 28 @Number of TDP for MS Exchange in try buy mode
LNOTES_ACT N 28 @Number of TDP for Lotus Notes in use
LNOTES_TRYBUY N 28 @Number of TDP for Lotus Notes in try buy mode
DOMINO_ACT N 28 @Number of TDP for Lotus Domino in use
DOMINO_TRYBUY N 28 @Number of TDP for Lotus Domino in try buy mode
INFORMIX_ACT N 28 @Number of TDP for Informix in use
INFORMIX_TRYBUY N 28 @Number of TDP for Informix in try buy mode
SAPR3_ACT N 28 @Number of TDP for SAP R/3 in use
SAPR3_TRYBUY N 28 @Number of TDP for SAP R/3 in try buy mode
ESS_ACT N 28 @Number of TDP for ESS in use
ESS_TRYBUY N 28 @Number of TDP for ESS in try buy mode
ESSR3_ACT N 28 @Number of TDP for ESS R/3 in use
ESSR3_TRYBUY N 28 @Number of TDP for ESS R/3 in try buy mode
EMCSYMM_ACT N 28 @Number of TDP for EMC Symmetrix in use
EMCSYMM_TRYBUY N 28 @Number of TDP for EMC Symmetrix in try buy
mode
EMCSYMR3_ACT N 28 @Number of TDP for EMC Symmetrix R/3 in use
EMCSYMR3_TRYBUY N 28 @Number of TDP for EMC Symmetrix R/3 in try buy
mode
WAS_ACT N 28 @Number of TDP for WAS in use
WAS_TRYBUY N 28 @Number of TDP for WAS in try buy mode
DATARET_ACT D 20 @Is IBM System Storage Archive Manager in use ?
DATARET_LIC D 20 @Is IBM System Storage Archive Manager licensed
?
TSMBASIC_ACT D 20 @Is Tivoli Storage Manager Basic Edition in use
TSMBASIC_LIC D 20 @Is Tivoli Storage Manager Basic Edition
licensed
TSMEE_ACT D 20 @Is Tivoli Storage Manager Extended Edition in
use
TSMEE_LIC D 20 @Is Tivoli Storage Manager Extended Edition
licensed
COMPLIANCE D 20 @Server License Compliance
//NAME LICENSE_DETAILS S 300 @License usage details
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from LICENSE_DETAILS
//ATTRIBUTES

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 505

LICENSE_NAME D 12 @License Type
NODE_NAME D 64 @Node Name
LAST_USED D 28 @Last Access Date/Time
TRYBUY D 8 @Is Try Buy?
//NAME LOG S 300 @Server recovery log information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from LOG
//ATTRIBUTES
AVAIL_SPACE_MB N 8 @Available Space (MB)
CAPACITY_MB N 8 @Assigned Capacity (MB)
MAX_EXTENSION_MB N 8 @Maximum Extension (MB)
MAX_REDUCTION_MB N 8 @Maximum Reduction (MB)
PAGE_SIZE C 999999 @Page Size (bytes)
USABLE_PAGES N 8 @Total Usable Pages
USED_PAGES N 8 @Used Pages
PCT_UTILIZED N 4 @Pct Util
MAX_PCT_UTILIZED N 4 @Max. Pct Util
PHYSICAL_VOLUMES N 8 @Physical Volumes
LOG_POOL_PAGES N 8 @Log Pool Pages
LOG_POOL_PCT_UTIL N 8 @Log Pool Pct. Util
LOG_POOL_PCT_WAIT N 8 @Log Pool Pct. Wait
CONSUMPTION_MB N 20 @Cumulative Consumption (MB)
CONSUMPTION_DATE D 28 @Consumption Reset Date/Time
//NAME LOGSPACETRIGGER S 300 @Recovery Log space trigger information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from LOGSPACETRIGGER
//ATTRIBUTES
FULLPCT C 999999 @LOG Full Percentage
EXPANSIONPCT C 999999 @LOG Space Expansion Percentage
EXPANSION_PREFIX D 252 @LOG Expansion prefix
MAXIMUM_LOG_SIZE N 8 @LOG Maximum Size (Megabytes)
MIRROR_PREFIX_1 D 252 @Mirror Prefix 1
MIRROR_PREFIX_2 D 252 @Mirror Prefix 2
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 64 @Last Update by (administrator)
//NAME LOGVOLUMES S 300 @Recovery log volumes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from LOGVOLUMES
//ATTRIBUTES
COPY1_NAME D 256 @Volume Name (Copy 1)
COPY1_STATUS D 20 @Copy Status
COPY2_NAME D 256 @Volume Name (Copy 2)
COPY2_STATUS D 20 @Copy Status
COPY3_NAME D 256 @Volume Name (Copy 3)
COPY3_STATUS D 20 @Copy Status

506 Tivoli Management Services Warehouse and Reporting

AVAIL_SPACE_MB N 8 @Available Space (MB)
ALLOC_SPACE_MB N 8 @Allocated Space (MB)
FREE_SPACE_MB N 8 @Free Space (MB)
//NAME MEDIA S 300 @Physical volumes managed by move media
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from MEDIA
//ATTRIBUTES
VOLUME_NAME D 256 @Storage pool volumes
STATE D 20 @State
UPD_DATE D 28 @Last Update Date/Time
LOCATION D 256 @Location
STGPOOL_NAME D 32 @Storage Pool Name
LIB_NAME D 32 @Automated LibName
STATUS D 8 @Volume Status
ACCESS D 12 @Access
LRD D 28 @Last Reference Date
//NAME MGMTCLASSES S 300 @Management classes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from MGMTCLASSES
//ATTRIBUTES
DOMAIN_NAME D 32 @Policy Domain Name
SET_NAME D 32 @Policy Set Name
CLASS_NAME D 32 @Mgmt Class Name
DEFAULTMC D 20 @Default Mgmt Class ?
DESCRIPTION D 256 @Description
SPACEMGTECHNIQUE D 80 @Space Management Technique
AUTOMIGNONUSE C 999999 @Auto-Migrate on Non-Use
MIGREQUIRESBKUP D 40 @Migration Requires Backup?
MIGDESTINATION D 32 @Migration Destination
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
//NAME NODES K 300 @Client nodes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from NODES
//ATTRIBUTES
NODE_NAME D 64 KEY ATOMIC @Node Name
PLATFORM_NAME D 16 @Platform
DOMAIN_NAME D 32 @Policy Domain Name
PWSET_TIME D 28 @Password Set Date/Time
INVALID_PW_COUNT C 999999 @Invalid Sign-on Count
CONTACT D 256 @Contact
COMPRESSION D 8 @Compression
ARCHDELETE D 12 @Archive Delete Allowed?
BACKDELETE D 12 @Backup Delete Allowed?

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 507

LOCKED D 12 @Locked?
LASTACC_TIME D 28 @Last Access Date/Time
REG_TIME D 28 @Registration Date/Time
REG_ADMIN D 64 @Registering Administrator
LASTSESS_COMMMETH D 8 @Last Communication Method Used
LASTSESS_RECVD N 20 @Bytes Received Last Session
LASTSESS_SENT N 20 @Bytes Sent Last Session
LASTSESS_DURATION N 16 @Duration of Last Session
LASTSESS_IDLEWAIT N 16 @Idle Wait Last Session
LASTSESS_COMMWAIT N 16 @Comm. Wait Last Session
LASTSESS_MEDIAWAIT N 16 @Media Wait Last Session
CLIENT_VERSION C 999999 @Client Version
CLIENT_RELEASE C 999999 @Client Release
CLIENT_LEVEL C 999999 @Client Level
CLIENT_SUBLEVEL C 999999 @Client Sub-level
CLIENT_OS_LEVEL D 20 @Client OS Level
OPTION_SET D 64 @Optionset
AGGREGATION D 12 @Aggregated?
URL D 200 @URL
NODETYPE D 8 @Node Type
PASSEXP N 8 @Password Expiration Period
KEEP_MP D 12 @Keep Mount Point?
MAX_MP_ALLOWED N 8 @Maximum Mount Points Allowed
AUTO_FS_RENAME D 8 @Auto Filespace Rename
VALIDATEPROTOCOL D 8 @Validate Protocol
TCP_NAME D 64 @TCP/IP Name
TCP_ADDRESS D 64 @TCP/IP Address
GUID D 48 @Globally Unique ID
TXNGROUPMAX N 8 @Transaction Group Max
DATAWRITEPATH D 12 @Data Write Path
DATAREADPATH D 12 @Data Read Path
SESSION_INITIATION D 256 @Session Initiation
CLIENT_HLA D 64 @HLADDRESS
CLIENT_LLA D 64 @LLADDRESS
COLLOCGROUP_NAME D 32 @Collocation Group Name
PROXY_TARGET D 256 @Proxynode Target
PROXY_AGENT D 256 @Proxynode Agent
//NAME OCCUPANCY S 300 @Client storage occupancy
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from OCCUPANCY
//ATTRIBUTES
NODE_NAME D 64 @Node Name
TYPE D 20 @Type
FILESPACE_NAME D 64 @Filespace Name
STGPOOL_NAME D 32 @Storage Pool Name

508 Tivoli Management Services Warehouse and Reporting

NUM_FILES N 8 @Number of Files
PHYSICAL_MB N 16 @Physical Space Occupied (MB)
LOGICAL_MB N 16 @Logical Space Occupied (MB)
FILESPACE_ID N 8 @FSID
//NAME OPTIONS S 300 @Server Options
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from OPTIONS
//ATTRIBUTES
OPTION_NAME D 40 @Server Option
OPTION_VALUE D 256 @Option Setting
//NAME PATHS S 300 @Paths
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from PATHS
//ATTRIBUTES
SOURCE_NAME D 64 @Source Name
SOURCE_TYPE D 16 @Source Type
DESTINATION_NAME D 132 @Destination Name
DESTINATION_TYPE D 16 @Destination Type
LIBRARY_NAME D 64 @Library
NODE_NAME D 64 @Node Name
DEVICE D 64 @Device
EXTERNAL_MANAGER D 256 @External Manager
LUN D 24 @LUN
INITIATOR_ID N 8 @Initiator
DIRECTORY D 128 @Directory
ONLINE D 40 @On-Line
LAST_UPDATE_BY D 64 @Last Update by (administrator)
LAST_UPDATE D 28 @Last Update Date/Time
//NAME POLICYSETS S 300 @Policy sets
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from POLICYSETS
//ATTRIBUTES
DOMAIN_NAME D 32 @Policy Domain Name
SET_NAME D 32 @Policy Set Name
DEFMGMTCLASS D 32 @Default Mgmt Class Name
DESCRIPTION D 256 @Description
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
//NAME PROCESSES S 300 @Client schedule associations
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from PROCESSES
//ATTRIBUTES
PROCESS_NUM N 8 @Process Number
PROCESS D 64 @Process Description

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 509

START_TIME D 28 @Start Date/Time
FILES_PROCESSED N 8 @Files Processed
BYTES_PROCESSED N 20 @Bytes Processed
STATUS D 256 @Status
//NAME PROFILES S 300 @Profiles
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from PROFILES
//ATTRIBUTES
CONFIG_MANAGER D 64 @Configuration manager
PROFILE_NAME D 32 @Profile name
LOCKED D 12 @Locked?
DESCRIPTION D 256 @Description
//NAME PROF_ASSOCIATIONS S 300 @Profile associations
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from PROF_ASSOCIATIONS
//ATTRIBUTES
CONFIG_MANAGER D 64 @Configuration manager
PROFILE_NAME D 32 @Profile name
ASSOC_OBJECT D 16 @Associated object type
OBJECT_NAME D 64 @Object name
//NAME RECLAIM_ANALYSIS S 300 @Server reclamation analysis table
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from RECLAIM_ANALYSIS
//ATTRIBUTES
CATEGORY D 12 @Analysis category
NODE_NAME D 64 @Node Name
FILESPACE_NAME D 256 @Filespace Name
ENTRYTYPE D 40 @Analysis file copy type
HL_NAME D 256 @Client high-level name
LL_NAME D 256 @Client low-level name
OBJTYPE D 16 @Object type
ID D 100 @Object Identifier
AUDIT_STATE D 40 @Analysis object state
//NAME RESTORES S 300 @Client restore operations
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from RESTORES
//ATTRIBUTES
SESSION N 8 @Sess Number
RESTORE_STATE D 40 @Restore State
RESTORE_MINUTES N 8 @Elapsed Minutes
NODE_NAME D 64 @Node Name
FILESPACE_NAME D 256 @Filespace Name
FILESPEC D 256 @File Spec
FILESPACE_ID N 8 @FSID
//NAME SAN S 300 @SAN attached devices

510 Tivoli Management Services Warehouse and Reporting

//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SAN
//ATTRIBUTES
DEVICE_TYPE D 20 @Device Type
VENDOR D 8 @Vendor
PRODUCT D 16 @Product
SERIAL D 64 @Serial Number
DEVICE D 64 @Device
IS_DATAMOVER D 12 @Data Mover
NODE_WWN D 16 @Node WWN
PORT_WWN D 16 @Port WWN
LUN N 8 @LUN
SCSI_PORT N 8 @SCSI Port
SCSI_BUS N 8 @SCSI Bus
SCSI_TARGET N 8 @SCSI Target
//NAME SCRIPTS S 300 @Server Command Scripts
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SCRIPTS
//ATTRIBUTES
NAME D 32 @Name
LINE N 8 @Line Number
COMMAND D 256 @Command
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
//NAME SCRIPT_NAMES K 300 @Server Command Script Names
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SCRIPT_NAMES
//ATTRIBUTES
NAME D 32 KEY ATOMIC @Name
DESCRIPTION D 256 @Description
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
PROFILE D 256 @Managing profile
//NAME SERVERS K 300 @Remote server nodes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SERVERS
//ATTRIBUTES
SERVER_NAME D 64 KEY ATOMIC @Server Name
COMMMETH D 8 @Comm. Method
HL_ADDRESS D 200 @High-level Address
LL_ADDRESS D 20 @Low-level Address
DESCRIPTION D 200 @Description
ALLOWREPLACE D 12 @Allow Replacement
NODE_NAME D 64 @Node Name
LASTACC_TIME D 28 @Last Access Date/Time

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 511

LOCKED D 12 @Locked?
COMPRESSION D 8 @Compression
ARCHDELETE D 12 @Archive Delete Allowed?
URL D 200 @URL
REG_TIME D 28 @Registration Date/Time
REG_ADMIN D 64 @Registering Administrator
LASTSESS_RECVD N 20 @Bytes Received Last Session
LASTSESS_SENT N 20 @Bytes Sent Last Session
LASTSESS_DURATION N 8 @Duration of Last Session
LASTSESS_IDLEWAIT N 8 @Pct. Idle Wait Last Session
LASTSESS_COMMWAIT N 8 @Pct. Comm. Wait Last Session
LASTSESS_MEDIAWAIT N 8 @Pct. Media Wait Last Session
GRACE_DEL_PERIOD N 8 @Grace Deletion Period
PROFILE D 256 @Managing profile
SERVER_PWD_SET D 12 @Server Password Set
SERVER_PWSET_TIME D 28 @Server Password Set Date/Time
SERVER_INVALID_PWC C 999999 @Invalid Sign-on Count for Server
VVNODE_PWD_SET D 12 @Virtual Volume Password Set
VVNODE_PWSET_TIME D 28 @Virtual Volume Password Set Date/Time
VVNODE_INVALID_PWC C 999999 @Invalid Sign-on Count for Virtual
Volume Node
VALIDATEPROTOCOL D 8 @Validate Protocol
//NAME SERVER_GROUP K 300 @Server Groups
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SERVER_GROUP
//ATTRIBUTES
GROUP_NAME D 64 KEY ATOMIC @Server Group
DESCRIPTION D 256 @Description
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 64 @Last Update by (administrator)
PROFILE D 256 @Managing profile
//NAME SESSIONS S 300 @Active client sessions
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SESSIONS
//ATTRIBUTES
SESSION_ID N 8 @Sess Number
START_TIME D 28 @Start Date/Time
COMMMETHOD D 32 @Comm. Method
STATE D 32 @Sess State
WAIT_SECONDS N 8 @Wait Time
BYTES_SENT N 20 @Bytes Sent
BYTES_RECEIVED N 20 @Bytes Recvd
SESSION_TYPE D 20 @Sess Type
CLIENT_PLATFORM D 20 @Platform
CLIENT_NAME D 64 @Client Name

512 Tivoli Management Services Warehouse and Reporting

OWNER_NAME D 32 @User Name
MOUNT_POINT_WAIT D 256 @Waiting for mount point(s)
INPUT_MOUNT_WAIT D 256 @Waiting for mount of input volume(s)
INPUT_VOL_WAIT D 256 @Waiting for input volume(s)
INPUT_VOL_ACCESS D 256 @Waiting for mount of input volume(s)
OUTPUT_MOUNT_WAIT D 256 @Waiting for mount of output volume(s)
OUTPUT_VOL_WAIT D 256 @Waiting for output volume(s)
OUTPUT_VOL_ACCESS D 256 @Current output volume(s)
LAST_VERB D 32 @Last Verb
VERB_STATE D 20 @Verb State
//NAME SPACEMGFILES S 300 @Client space-managed files
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SPACEMGFILES
//ATTRIBUTES
NODE_NAME D 64 @Node Name
FILESPACE_NAME D 64 @Filespace Name
STATE D 16 @File state (active, inactive)
EXTOBJID D 128 @Client object ID for the file
OBJID N 20 @Server object ID for the client object
FILE_NAME D 256 @Client's Name for File
INSERT_DATE D 28 @Date/time that object was migrated
DELETE_DATE D 28 @Date/time that object was deleted
CLASS_NAME D 32 @Mgmt Class Name
//NAME STATUS S 300 @Server status
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from STATUS
//ATTRIBUTES
SERVER_NAME D 32 @Server Name
SERVER_HLA D 64 @Server host name or IP address
SERVER_LLA D 32 @Server TCP/IP port number
SERVER_URL D 200 @Server URL
SERVER_PASSSET D 12 @Server Password Set
INSTALL_DATE D 28 @Server Installation Date/Time
RESTART_DATE D 28 @Server Restart Date/Time
AUTHENTICATION D 4 @Authentication
PASSEXP C 999999 @Password Expiration Period
INVALIDPWLIMIT C 999999 @Invalid Sign-on Attempt Limit
MINPWLENGTH C 999999 @Minimum Password Length
WEBAUTHTIMEOUT C 999999 @WEB Admin Authentication Time-out
(minutes)
REGISTRATION D 8 @Registration
AVAILABILITY D 20 @Availability
ACCOUNTING D 4 @Accounting
ACTLOGRETENTION C 999999 @Activity Log Retention
SUMMARYRETENTION C 999999 @Activity Summary Retention Period

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 513

LICENSEAUDITPERIOD C 999999 @License Audit Period
LASTLICENSEAUDIT D 28 @Last License Audit
LICENSECOMPLIANCE D 52 @Server License Compliance
SCHEDULER D 20 @Central Scheduler
MAXSESSIONS C 999999 @Maximum Sessions
MAXSCHEDSESSIONS C 999999 @Maximum Scheduled Sessions
EVENTRETENTION C 999999 @Event Record Retention Period
CLIENTACTDURATION C 999999 @Client Action Duration
RANDOMIZE C 999999 @Schedule Randomization Percentage
QUERYSCHEDPERIOD C 999999 @Query Schedule Period
MAXCMDRETRIES C 999999 @Maximum Command Retries
RETRYPERIOD C 999999 @Retry Period
SCHEDMODE D 12 @Scheduling Modes
LOGMODE D 12 @Log Mode
DBBACKTRIGGER D 40 @Database Backup Trigger
ACTIVERECEIVERS D 256 @Active Receivers
CONFIG_MANAGER D 12 @Configuration manager
REFRESH_INTERVAL C 999999 @Refresh interval
LAST_REFRESH D 28 @Last refresh date/time
CROSSDEFINE D 4 @Crossdefine
SUBFILE D 28 @Subfile Backup
CONTEXT_MESSAGING D 16 @Context Messaging
SERVERFREE_STATUS D 28 @Server-free Status
SERVERFREE_BATCH C 999999 @Server-free Batch Size
TOCLOADRETENTION C 999999 @Table of Contents (TOC) Load Retention
MACHINE_GUID D 48 @Machine GUID
ARCHRETPROT D 4 @Archive Retention Protection
PLATFORM D 32 @Platform
VERSION N 8 @Version
RELEASE N 8 @Release
LEVEL N 8 @Level
SUBLEVEL N 8 @Sublevel
//NAME STGPOOLS K 300 @Storage pools
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from STGPOOLS
//ATTRIBUTES
STGPOOL_NAME D 32 KEY ATOMIC @Storage Pool Name
POOLTYPE D 32 @Storage Pool Type
DEVCLASS D 32 @Device Class Name
EST_CAPACITY_MB N 20 @Estimated Capacity
TRIGGER_PCT_UTIL N 4 @Space Trigger Util
PCT_UTILIZED N 4 @Pct Util
PCT_MIGR N 4 @Pct Migr
PCT_LOGICAL N 4 @Pct Logical
HIGHMIG C 999999 @High Mig Pct

514 Tivoli Management Services Warehouse and Reporting

LOWMIG C 999999 @Low Mig Pct
MIGPROCESS C 999999 @Migration Processes
NEXTSTGPOOL D 32 @Next Storage Pool
MAXSIZE N 20 @Maximum Size Threshold
ACCESS D 16 @Access
DESCRIPTION D 256 @Description
OVFLOCATION D 256 @Overflow Location
CACHE D 4 @Cache Migrated Files?
COLLOCATE D 20 @Collocate?
RECLAIM C 999999 @Reclamation Threshold
MAXSCRATCH N 8 @Maximum Scratch Volumes Allowed
NUMSCRATCHUSED N 8 @Number of Scratch Volumes Used
REUSEDELAY C 999999 @Delay Period for Volume Reuse
MIGR_RUNNING D 20 @Migration in Progress?
MIGR_MB N 4 @Amount Migrated (MB)
MIGR_SECONDS N 8 @Elapsed Migration Time (seconds)
RECL_RUNNING D 20 @Reclamation in Progress?
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
RECLAIMSTGPOOL D 32 @Reclaim Storage Pool
MIGDELAY N 8 @Migration Delay
MIGCONTINUE D 20 @Migration Continue
DATAFORMAT D 12 @Storage Pool Data Format
COPYSTGPOOLS D 256 @Copy Storage Pool(s)
COPYCONTINUE D 20 @Continue Copy on Error?
CRCDATA D 12 @CRC Data
RECLAIMPROCESS C 999999 @Reclamation Processes
OFFSITERCLMLIMIT D 8 @Offsite Reclamation Limit
RECLAMATIONTYPE D 12 @Reclamation Type
//NAME STGSPACETRIGGER K 300 @Storage Pool space trigger information
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from STGSPACETRIGGER
//ATTRIBUTES
FULLPCT C 999999 KEY @STGPOOL Full Percentage
EXPANSIONPCT C 999999 @STGPOOL Expansion Percentage
EXPANSION_PREFIX D 252 @STGPOOL Expansion prefix
STGPOOL D 32 @STGPOOL
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 64 @Last Update by (administrator)
//NAME SUBSCRIPTIONS S 300 @Subscriptions
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SUBSCRIPTIONS
//ATTRIBUTES
CONFIG_MANAGER D 64 @Configuration manager
PROFILE_NAME D 32 @Profile name

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 515

SUBSCRIBER D 64 @Subscriber
IS_CURRENT D 12 @Is current?
LAST_UPDATE D 28 @Last update date/time
//NAME SUMMARY S 300 @Server Activity Summary Table
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from SUMMARY
//ATTRIBUTES
START_TIME D 28 @Start time
END_TIME D 28 @End Time
ACTIVITY D 64 @Process or Session Activity Name
NUMBER N 8 @Process or Session Number
ENTITY D 64 @Associated user or storage pool(s) associated
with the activity
COMMMETH D 8 @Communications Method Used
ADDRESS D 64 @Communications Address
SCHEDULE_NAME D 32 @Schedule Name
EXAMINED N 20 @Number of objects (files and/or directories)
examined by the process/session
AFFECTED N 20 @Number of objects affected (moved, copied or
deleted) by the process/session
FAILED N 20 @Number of objects that failed in the
process/session
BYTES N 20 @Bytes processed
IDLE N 8 @Seconds that the session/process was idle
MEDIAW N 8 @Seconds that the session/process was waiting
for access to media (volume mounts)
PROCESSES N 8 @Number of processes used for process
SUCCESSFUL D 12 @Successful ?
VOLUME_NAME D 64 @Volume Name
DRIVE_NAME D 64 @Drive Name
LIBRARY_NAME D 64 @Library Name
LAST_USE D 64 @Last Use
COMM_WAIT N 8 @Current comm wait time in seconds
NUM_OFFSITE_VOLS N 8 @Number of offsite volumes processed
//NAME VFSMAPPINGS S 300 @Virtual Filespace Mappings
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from VFSMAPPINGS
//ATTRIBUTES
NODE_NAME D 64 @Node Name
VIRTUAL_FS_NAME D 64 @Virtual Filespace Mapping Name
FILESPACE_NAME D 256 @Filespace Name
PATH D 256 @Path
HEXADECIMAL D 12 @Hexadecimal Path?
//NAME VOLHISTORY S 300 @Volume history information
//SOURCE ODBC TSMODBC user=admin pswd=admin

516 Tivoli Management Services Warehouse and Reporting

//SQL Select * from VOLHISTORY
//ATTRIBUTES
DATE_TIME D 28 @Date/Time
UNIQUE N 8
TYPE D 20 @Volume Type
BACKUP_SERIES C 999999 @Backup Series
BACKUP_OPERATION C 999999 @Backup Operation
VOLUME_SEQ C 999999 @Volume Seq
DEVCLASS D 32 @Device Class
VOLUME_NAME D 256 @Volume Name
LOCATION D 256 @Volume Location
COMMAND D 256 @Command
//NAME VOLUMES S 300 @Storage pool volumes
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from VOLUMES
//ATTRIBUTES
VOLUME_NAME D 256 @Volume Name
STGPOOL_NAME D 32 @Storage Pool Name
DEVCLASS_NAME D 32 @Device Class Name
EST_CAPACITY_MB N 20 @Estimated Capacity
SCALEDCAP_APPLIED N 8 @Scaled Capacity Applied
PCT_UTILIZED N 4 @Pct Util
STATUS D 20 @Volume Status
ACCESS D 20 @Access
PCT_RECLAIM N 4 @Pct. Reclaimable Space
SCRATCH D 20 @Scratch Volume?
ERROR_STATE D 20 @In Error State?
NUM_SIDES C 999999 @Number of Writable Sides
TIMES_MOUNTED N 8 @Number of Times Mounted
WRITE_PASS N 8 @Write Pass Number
LAST_WRITE_DATE D 28 @Approx. Date Last Written
LAST_READ_DATE D 28 @Approx. Date Last Read
PENDING_DATE D 28 @Date Became Pending
WRITE_ERRORS N 8 @Number of Write Errors
READ_ERRORS N 8 @Number of Read Errors
LOCATION D 256 @Volume Location
MVSLF_CAPABLE D 4 @Volume is MVS Lanfree Capable
CHG_TIME D 28 @Last Update Date/Time
CHG_ADMIN D 32 @Last Update by (administrator)
BEGIN_RCLM_DATE D 28 @Begin Reclaim Period
END_RCLM_DATE D 28 @End Reclaim Period

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 517

//NAME VOLUMEUSAGE S 300 @SEQUENTIAL volume usage by client node
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from VOLUMEUSAGE
//ATTRIBUTES
NODE_NAME D 64 @Node Name
COPY_TYPE D 16 @Type
FILESPACE_NAME D 64 @Filespace Name
STGPOOL_NAME D 32 @Storage Pool Name
VOLUME_NAME D 256 @Volume Name
FILESPACE_ID N 8 @FSID
//NAME COLUMNS S 300 @SQL Table Column Catalog
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from COLUMNS
//ATTRIBUTES
TABSCHEMA D 8 @Table schema name (qualifier)
TABNAME D 20 @Table Name
COLNAME D 20 @Column name
COLNO C 999999 @Column number
INDEX_KEYSEQ C 999999 @Column key sequence number
INDEX_ORDER D 4 @Index key sequence (A - ascending D - descending)
TYPENAME D 40 @Column data type
LENGTH N 8 @Column length
SCALE C 999999 @Columns scale (for decimal or numeric
columns)
NULLS D 8 @Can column contain NULL values ?
REMARKS D 252 @Description
//NAME ENUMTYPES K 300 @SQL Enumerated Types Catalog
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from ENUMTYPES
//ATTRIBUTES
TYPEINDEX N 8 KEY ATOMIC @Unique index code for enumerated type
TYPENAME D 20 @Declared enumerated type name
VALUECOUNT N 8 @Number of distinct enumeration values
VALUES D 252 @List of enumeration value names (ordinal position
within type)
REMARKS D 252 @Description
//NAME TABLES S 300 @SQL Table Catalog
//SOURCE ODBC TSMODBC user=admin pswd=admin
//SQL Select * from TABLES

518 Tivoli Management Services Warehouse and Reporting

//ATTRIBUTES
TABSCHEMA D 8 @Table schema name (qualifier)
TABNAME D 20 @Table Name
CREATE_TIME D 28 @Date/time of creation
COLCOUNT C 999999 @Number of columns in table
INDEX_COLCOUNT C 999999 @Number of index columns
UNIQUE_INDEX D 8 @Is the index unique ?
REMARKS D 252 @Description

Note: The following products are trademarked:

� SAP® R/3
� IBM System Storage™
� IBM Lotus® Notes®

 Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario 519

520 Tivoli Management Services Warehouse and Reporting

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247290

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247290.

B

© Copyright IBM Corp. 2007. All rights reserved. 521

ftp://www.redbooks.ibm.com/redbooks/SG247290
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247290.zip Zipped rpt design files

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating System: Windows/Linux/UNIX

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

522 Tivoli Management Services Warehouse and Reporting

acronyms
ARM Application Response
Measurement

ASFS API, Socket, File, Script

BCM Byte Code Modification

BIRT Business Intelligence and
Reporting Tools

CCMDB Change and Configuration
Management Database

CICS Customer Information Control
System

DBA database administrator

DMS Database Managed Space

DMT Dictionary-managed
tablespace

DoS Denial of Service

ECC error correction code

ESS Enterprise Storage Server

HACMP High Availability Cluster
Multi-Processing, Enhanced
Scalability

IBM International Business
Machines Corporation

IMS Information Management
System

ITSO International Technical
Support Organization

J2EE Java 2 Platform, Enterprise
Edition

JDBC Java Database Connectivity

LMT Locally-managed tablespace

MDC Multi-Dimensional Clustering

MQT materialized query table

MSCS Microsoft Cluster Server

NIC networking interface card

ODBC Open Database Connectivity

Abbreviations and

© Copyright IBM Corp. 2007. All rights reserved.
ODI Object Definition Interchange

ODS operational data store

OPAL Open Process Automation
Library

PDS partitioned data set

RID row identifier

RPC remote procedure call

SA system administrator

SGA system global area

sheapthres Sort heap threshold

SLA service level agreement

SLM service level management

SMS System Managed Space

SOA Service-Oriented Architecture

SOAP Simple Object Access
Protocol

SPA Summarization and Pruning
agent

TCAM Tivoli Composite Application
Manager

TCO total cost of ownership

TEMA Tivoli Enterprise Monitoring
Agent

TEMS Tivoli Enterprise Monitoring
Server

TEP Tivoli Enterprise Portal

TEPS Tivoli Enterprise Portal Server

TM Tivoli Monitoring

TME Tivoli Management
Environment

TSM Tivoli Storage Manager
 523

524 Tivoli Management Services Warehouse and Reporting

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
� Deployment Guide Series: IBM Tivoli Monitoring Express Version 6.1,

SG24-7217

Publications
These publications are also relevant as further information sources:

� IBM Tivoli Monitoring for Tivoli Enterprise Console, GC32-1959

� IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407

� IBM Tivoli Composite Application Manger for SOA: Installing and Using
Project Crystal, GC32-9492

� IBM DB2 UDB Administration Guide: Implementation V8.2, SC09-4820

� IBM Tivoli Service Level Advisor Command Reference v2.1.1, SC32-0833

� Getting Started with IBM Tivoli Service Level Advisor v2.1, SC32-0834

� IBM Tivoli Service Level Advisor Administrator's Guide v2.1.1, SC32-0835

� IBM Tivoli Monitoring Administering Tivoli Monitoring Guide, SC32-9408

� IBM Tivoli Monitoring Universal Agent User's Guide, SC32-9459

© Copyright IBM Corp. 2007. All rights reserved. 525

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Tivoli Monitoring information center

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?to
c=/com.ibm.itm.doc/toc.xml

� IBM Tivoli Storage Manager Version 5.3.3 Tivoli Storage Manager ODBC
Driver for Windows

http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp?top
ic=/com.ibm.itsmreadme.doc/WINDOWS/ODBC/README_odbc_enu.htm

� IBM: IBM DB2 Driver for JDBC and SQLJ

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source
=swg-dm-db2jdbcdriver&S_PKG=dl&S_TACT=dm-db2jdbcdriver&lang=it_IT&cp
=UTF-8

� Information about database normalization

http://en.wikipedia.org/wiki/Database_normalization

� Primeur Web site

http://www.primeur.com

� Primeur Quick Reporter for IBM Tivoli Monitoring Web site

http://www.primeur.com/products/system_management/tivoli/qr4itm_v13.
html

� Axibase Web site

http://www.axibase.com

� Axibase Warehouse Designer for IBM Tivoli Monitoring V6.1 Web site

http://www.axibase.com/tivoli

� BIRT Web site

http://www.eclipse.org/birt/phoenix/

� BIRT Report Downloads

http://download.eclipse.org/birt/downloads

� Apache Tomcat site for specific installation instructions

http://tomcat.apache.org/index.html

� Web site to download DB2 fix packs

http://www.ibm.com/software/data/db2/udb/support/downloadv8.html

526 Tivoli Management Services Warehouse and Reporting

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?toc=/com.ibm.itm.doc/toc.xml
http://en.wikipedia.org/wiki/Database_normalization
http://www.primeur.com/products/system_management/tivoli/qr4itm_v13.html
http://www.primeur.com/products/system_management/tivoli/qr4itm_v13.html
http://www.axibase.com/tivoli
http://www.eclipse.org/birt/phoenix/
http://tomcat.apache.org/index.html
http://www.ibm.com/software/data/db2/udb/support/downloadv8.html
http://www.primeur.com/products/system_management/tivoli/qr4itm_v13.html
http://www.primeur.com/products/system_management/tivoli/qr4itm_v13.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp?topic=/com.ibm.itsmreadme.doc/WINDOWS/ODBC/README_odbc_enu.htm
http://download.eclipse.org/birt/downloads
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-dm-db2jdbcdriver&S_PKG=dl&S_TACT=dm-db2jdbcdriver&lang=it_IT&cp=UTF-8
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-dm-db2jdbcdriver&S_PKG=dl&S_TACT=dm-db2jdbcdriver&lang=it_IT&cp=UTF-8
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-dm-db2jdbcdriver&S_PKG=dl&S_TACT=dm-db2jdbcdriver&lang=it_IT&cp=UTF-8
http://www.primeur.com
http://www.axibase.com

� Web site to download Oracle ODBC drivers

http://www.oracle.com/technology/software/tech/windows/odbc/htdocs/u
tilsoft.html

� Crystal Reports Web site

http://www.businessobjects.com/products/reporting/crystalreports

� Crystal Reports for Eclipse Web site

http://www.eclipseplugincentral.com/Web_Links-index-req-viewlink-cid
-670.html

� Crystal Reports documentation

http://support.businessobjects.com/documentation/product_guides/defa
ult.asp

� JSR-000109 Implementing Enterprise Web Services

http://www.jcp.org/aboutJava/communityprocess/final/jsr109/

� Creating SOAP Message Handlers to Intercept the SOAP Message

http://e-docs.bea.com/wls/docs81/webserv/interceptors.html

� IBM Software - DB2 DataPropagator - Product Overview

http://www-306.ibm.com/software/data/integration/replication

� IBM Software - DB2 Data Warehouse Edition - Product Overview

http://www-306.ibm.com/software/data/db2/dwe/

� IBM Software - WebSphere DataStage - Product Overview

http://www-306.ibm.com/software/data/integration/datastage/

� IBM Tivoli Open Process Automation Library

http://catalog.lotus.com/wps/portal/topal/

 Related publications 527

http://www.oracle.com/technology/software/tech/windows/odbc/htdocs/utilsoft.html
http://www.businessobjects.com/products/reporting/crystalreports
http://www.eclipseplugincentral.com/Web_Links-index-req-viewlink-cid-670.html
http://support.businessobjects.com/documentation/product_guides/default.asp
http://www.jcp.org/aboutJava/communityprocess/final/jsr109/
http://www-306.ibm.com/software/data/integration/replication/
http://www-306.ibm.com/software/data/db2/dwe/
http://catalog.lotus.com/wps/portal/topal/
http://www-306.ibm.com/software/data/integration/datastage/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

528 Tivoli Management Services Warehouse and Reporting

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
(TCO) total cost of ownership 25
.rptdesign file 424
.tec_config file 157

A
access plan 282
Active Correlation Technology (ACT) 152
Active Directory 388
aggregation behavior characterization attributes

count 67
gauge 67
low 68
pdel 69
peak 68
property 68
samplecount 68
state 69

Alphabox 11
analytical reporting 8
ANSI tuning tips 295
Apache Tomcat 392
API (application programming interface) 320
API Server 318–319
API-Socket-File-Script (ASFS) 318–319
application design details and SQL tuning 277
application internals 319
application programming interface (API) 318–320
Application Response Measurement (ARM) 16
application server 224
application-related problems 16
ARM (Application Response Measurement) 16
ASFS (API-Socket-File-Script) 318
attribute group 32, 57, 60, 64, 321, 323–324

attribute list 323
binary file 55
data redirection 321
default 58
definitions 63
detailed table 60
historical data collection 58, 325
multiple summarization tables 60
object definitions 69

© Copyright IBM Corp. 2007. All rights reserved.
RDBMS 60
single-instance 62
Tivoli Data Warehouse 150

autogrowth parameter 490
availability 48

B
batch inserts 98
batch option 123, 243

Linux/UNIX 243
Windows 243

batch processing 243
BCM (Byte Code Modification) 203
BEA WebLogic 17, 225
binary 24-hour data 54
binding the package 237
BIRT Designer 393
BIRT Report Viewer 394
BIRT Reporting Interface 410
Brio 11
buffer cache 268
buffer pools 47, 257, 264
Business Intelligence 8
Business Objects 427
Byte Code Modification (BCM) 203

C
CCMDB (Change and Configuration Management
Database) 4
central processing unit (CPU) 253
Change and Configuration Management Database
(CCMDB) 4
Chart Expert 457
CICS (Customer Information Control System) 17
client-side interception 220
cluster 45

overview 45
collection

interval 149
location 150

command
commEnv.sh 227
KD4configDC 225

 529

KD4configDC.sh 225
setDomainEnv.sh 227
setEnv 227

commEnv.sh 227
common communication transports 96
Concurrency control and isolation level

serializable 310
concurrency control and isolation level 307, 309,
311

read committed 309
read-only 309

configure groups 150
COUNT parameter 36
CPU (central processing unit) 253
creation

chart 456
nicknames 237
server definition 237
user mapping 237
wrapper 236

crontab 425
Crystal Reports 11, 428–429, 448–449, 451, 455

.rpt 428
creating a chart 456
creating a data source 433
Crystal Reports for Eclipse 428
Crystal Syntax 449
developed solution 428
filters 451
Formula Field 448
groups 455
licensed copy 428
parameters 451
process data on-demand basis 449
report file format 428
reporting 427
showing SQL of the report 454
SQL Expression Field 449
third-party tool 428
TMESTAMP field 449
Web site

installing 429
sample reports 428

CTIRA_NCSLISTEN environment variable 96
cursor stability 307
Customer Information Control System (CICS) 17

D
data collection 318–319, 325
data mart 10, 13, 76, 235

departmental control 235
primary purpose 235
types

better performance 235
data provider (DP) 320, 326

right choice 319
data source 118, 317, 319, 321, 324, 326
data stripe mirroring 49
data warehouse 111, 118
database

maintenance 260, 271
normalization 10
specific 307

database tuning 243
SQL tuning 277

data-striping 49
DB2 60, 253, 307

8.2 Control Center 62
catalog 261
table spaces 416
Unicode 434

default
attribute groups 29, 58
historical data collection 29
IP.PIPE port 34
proxy agent 126
retention configuration 103

degree of clustering 290
delta-based aggregation 68
dependent data mart 236
deployment descriptor 226
detailed data 54, 67, 76–77

SUM values 67
detailed data, 24 hours 11
detailed tables 64
dfa register command 173
dimension tables 10
disk

arrays 49
copy 52
mirroring 48, 50
parity 50

disproportionate distribution of agents 29
DISTINCT clause 298
DP (data provider) 320
dsutil 169

530 Tivoli Management Services Warehouse and Reporting

dsutil utility 168
duplexing 50
dynamic SQL 263

E
easier to manipulate 10
Eclipse installation 393
encryption of the transferred data 96
enumeration 69
environment file 105
Ephemeral Pipe 38–39
Error Correction Code 50
ETL (extract, transform, and load) 167
Event Viewer 474
exporter threads 98
Extensible Markup Language (XML) 174
external ODBC data source 379
extract, transform, and load (ETL)

mechanism 167
tool 240

F
fact tables 10
failover 45, 47

support 45
failure 42

disk 48
hardware 43
media 48
scenarios 44

federated database objects 236
federated global catalog 237
filtering 407
firewall

considerations 33
restrictions 39

firewall with NAT
Ephemeral Pipe 38
partitioning 39

FlashCopy 51
Formula Field 448
Framework MDist2 architecture 12

G
GA (general availability) 33
general availability (GA) 33
general SQL review process 277

general SQL-ANSI tuning tips 295
generated report 424
Global Location Broker 37
graphical user interface (GUI) 11
GUI (graphical user interface) 11

H
HACMP (High Availability Cluster Multi-Processing)
45
hardware and operating system usage 253

choosing disk drives 255
CPU utilization 253
I/O utilization 254
memory 253
network 256
recommendations 255

hd.ini 473
hd.ini file 98, 243
HDR file 60
heartbeat monitoring 46
high availability 42
High-Availability Cluster Multi-Processing (HACMP)
45, 47
high-level architecture 20
historical data collection 52, 54, 58, 147, 325

architecture 52
component flows 54
data tables and attributes 57
long-term data 53
short-term data 52

History Collection Configuration window 137
human-readable format 401, 416

I
IBM DB2 Data Warehouse Edition 240
IBM DB2 DataPropagator 239–240
IBM IT Service Management 4

solution 2
IBM Tivoli Availability Process Manager 16
IBM Tivoli Composite Application Manager 16
IBM Tivoli Composite Application Manager for Re-
sponse Time Tracking 188

agent configuration steps 192
collecting historical data 198
configuration

Linux and UNIX systems 196
Windows systems 189

response time information 188

 Index 531

Tivoli Data Warehouse integration 188
workspace examples 199

IBM Tivoli Composite Application Manager for SOA
219–220

agent configuration 221
configuring for BEA WebLogic data collector
226
Linux and UNIX systems 223
Windows systems 221

collecting agent historical data 227
configuring for WebSphere Application Server
data collector 225
directory structure 224
integration architecture 220
integration with Tivoli Data Warehouse 219
KD4configDC 225
server-side interception 220
workspace examples 229

IBM Tivoli Composite Application Manager for Web-
Sphere 201

agent configuration
Linux and UNIX systems 211

collecting historical data 213
configuration 203
J2EE Server log messages 202
performance data 201
WebSphere Application log messages 202
workspace examples 215

IBM Tivoli Enterprise Console 15
IBM Tivoli Monitoring 14, 188, 321, 326

V5.x 12
V6.1 11

IBM Tivoli Monitoring Agent 317, 321, 324
IBM Tivoli Open Process Automation Library
(OPAL) 388
IBM Tivoli Service Level Advisor 15, 177

configuration steps 168
configuring the data source 168
database 168
dsutil command 169
example reports 186
maxconnections 169
scmd commands 171
SLM Administration Server 169
SLM Reports 169
SLM Server 169
troubleshooting information 170

IBM Tivoli Universal Agent 316, 318–319
architecture 317

autonomous entity 318
collected data 324
configuring 327, 348
data flow 317
data interfaces 317
data provider 318
deployment scenarios 326
manipulating data with TEP 324
metafiles 321
ODBC provider 348
production versions 320
thread 318
Tivoli Storage Manager scenario 348
Universal Agent scenario

configuring 348
mdl file 349

when to use 326
IBM WebSphere Application Server 225
IBM WebSphere applications 17
IBM WebSphere Process Server 17
idle mode 46
idle standby 46
implementation differences 10
IMS (Information Management System) 17
incoming RPC calls 96
indexed views 270
industry best practices 2
Information Management System (IMS) 17
installations with firewalls 38
Intelligent Remote Agent (IRA) 95
IP.PIPE 33–34, 42

protocol 34, 96
ip.pipe server/client configuration 96
IP.SPIPE protocol 96
IRA communication framework 96
IT Operational Management 2

products 2
IT Service Management platform 2
itext-1.3.jar file 394
ITMUser 116

J
J2EE environments 16
JAR files 122
Java Database Connectivity (JDBC)

bridge 98
driver files 119
driver name 122

532 Tivoli Management Services Warehouse and Reporting

drivers 130, 140, 394
JDBC-based clients 103

Java Management Extensions (JMX)
JMX (Java Management Extensions) 203

Java Virtual Machine Tool Interface (JVMTI) 203
javax.xml.rpc.handler.HandlerInfo 226
javax.xml.rpc.handler.HandlerRegistry 226
JAX-RPC handler 220
JDBC (Java Database Connectivity) 103
jdbc.sqlserver 123
JNI (Java Native Interface)

JNI (Java Native Interface) 98
JVM heap size 108
JVMTI (Java Virtual Machine Tool Interface) 203

K
KD4configDC command 225
KD4configDC options 225
KD4configDC.sh 225
KD4configDC.sh command 225
KDC_DEBUG 39
KDC_DEBUG=Y 39
KDC_FAMILIES 38
KDC_PARTITION 38
KDCB0_HOSTNAME 37–38
KDEB_INTERFACELIST 37
KDSSTART LBDAEMON 38
keepalive packets 46
key IT processes 2
key SOA platforms 17
KHD_BATCH_USE=Y 98
KHD_CNX_POOL_SIZE 100
KHD_EXPORT_THREADS 98, 100
KHD_QUEUE_LENGTH 100
KHD_SRV_STATUSTIMEOUT 101
KHD_STATUSTIMEOUT 101
KHD_WAREHOUSE_TEMS_LIST 473
khdenv 473
khdexp.cfg 100
khdxcl1 100
KPX_WAREHOUSE_REGCHK 473
KSY_MAX_WORKER_THREADS 30, 107
ksy610.exe 65
KSYENV file 108
KUMA_STARTUP_DP 348
KUMENV file 320
KUMP_DPCONSOLE_PORT 320

L
less secure zone 39
Linux OS agent 149
Linux_CPU data set 409
Linux_Process 59
listening ports, default 34
load projection spreadsheet 77
LoadRunner 16
localhost 122
locking 308, 310, 313
log file 316, 319, 322, 326
logs 258, 269
long-term data 53

M
main data warehouse 236
Manage Tivoli Enterprise Monitoring Services utility
120
managed system 73, 322, 324
Manager of Managers 30
manual creation of data tables 241

benefits 241
files needed 241
procedure 241
SQL files created 242

massively parallel processor (MPP) 254
materialized query table (MQT) 259

creation step 239
materialized views 267
maxconnections 170
MDist2 12
MDist2 architecture 12
mdl file 332, 349, 373
memory 253
Mercury LoadRunner 16
metafile 316–318, 321, 323

control statement 321
APPL 321
ATTRIBUTES 322
CONFIRM 322
INTERNAL 321
NAME 321
RECORDSET 321
SNMP 321
SOURCE 321
SQL 322
SUMMARY 322

example 322

 Index 533

metric log files 151
Microsoft .NET 17, 219
Microsoft Cluster Server 45
minconnections 170
mirroring 48
Mission Critical Linux 45
monitoring agent 54, 62, 65
monitoring agent for DB2

attribute groups 58
binary table name 59

monitoring agent for Linux
attribute groups 58
binary table name 59

monitoring agent for UNIX
attribute groups 58
binary table name 59

monitoring agent for Windows OS
attribute groups 58
binary table name 59

monitoring server 66
monitoring solution 316, 326
monitoring tools 264, 268, 274
MPP (massively parallel processor) 254
MQT (materialized query table) 259
MS SQL 111
MSCS 45, 47
Multi-Computer/ServiceGuard 45
multiple network interface cards 37
multiple Warehouse Proxies 101, 126
mutual takeover 46–47

N
NAT (network address translation) 38
navigate multiple interfaces 11
NCS listen threads 96
network address translation (NAT) 35, 38
NIC 37
nodes 45
NT_Memory attribute group 63
NT_System table 236
NTPROCSSR.hdr 60

O
Object Definition Interchange (ODI) 69

file 69–70
file, TABLE keyword 70
keyword

*ATTR

 71
*BEHAV

 71
*OBJECT

 71
*TABLE

 70
*TYPE

 71
ODBC (Open Database Connectivity) 40
ODI (Object Definition Interchange) 69
OEM (original equipment manufacturer) 13
OLAP (online analytical processing) 13
online analytical processing (OLAP) 13
OPAL (Open Process Automation Library) 388
OPAL catalog 388
Open Database Connectivity (ODBC) 40

bridge 98
connection 40
data provider 322, 326
mdl file 349

operating system (OS) 316, 319
operational database 13
Oracle 264, 309, 388
original equipment manufacturer (OEM) 13
outage 43

P
partitioned database 47
PDS (Persistent Data Storage) 52
PDS history data set 53
performance 48, 50–51

degradation 46
goal 291
trends 18

Performance Monitoring Infrastructure (PMI) 201
performance tuning

Summarization and Pruning Agent 107
PMI (Performance Monitoring Infrastructure) 203
prefetch size 290
Primeur 388
product code 125
pruning settings 141, 150

Q
query tuning 309, 311, 314
querying the nicknames 238
QuickReporter

534 Tivoli Management Services Warehouse and Reporting

for IBM Tivoli Monitoring 388
for ITM version 1.3 389

R
RAID (Redundant Arrays of Independent Disks) 48
RAID-0 49–50
RAID-1 49–50
RAID-5 49–50
RAS log 107
raw data 10, 55, 66
RDBMS (relational database management system)
60
RDBMS troubleshooting 476

DB2
Network problems 477
Querying problems 479

Microsoft SQL Server 487
network problems 487
querying problems 488

Oracle 482
network problems 482
querying problems 483

read stability 307
real-time data 20
REBIND 263
RECORDSET statement 323
Redbooks Web site 528

Contact us xxviii
redo logs 265
redundancy 49
Redundant Arrays of Independent Disks

technology
variety 49

Redundant Arrays of Independent Disks (RAID) 48
array classifications 49
classifications 49
technology

performance 49
reliability 49
size 49

refresh deferred option 239
refresh status 151
relational data

base 326
relational database management system (RDBMS)
11, 53, 55, 60, 112
remote database 243
remote procedure call (RPC) 96

listeners 100
remote Tivoli Enterprise Monitoring Server 29
repeatable read 307
report

file format 428
layout 409

report engine installation file 394
reporting

better performance 235
Crystal Reports 427

reporting strategy 6
Response Time Tracking 16
restore 45
review application SQL for efficiencies 277
RIM API 152
RIM database 13
robust GUI 11
rollup process 65
row-based schema 10
RPC (remote procedure call) 96
rpt design files 393
RUNSTATS 261

S
SAS 11
scalability differences 12
scalable environment 32
schedule a report 425
scmd dfa commands 170
scmd dfa register 174
scmd dfa unregister 174
SCSI (Small Computer System Interface) 50
secure zone 40
selected attribute group

Tivoli Data Warehouse 150
server time out 101
server-side interception 220
service extension 220
service level management (SLM) 15
ServiceGuard 45
setDomainEnv.sh 227
setDomainEnv.sh command 227
setEnv command 227
setup_env.cmd 154
setup_env.sh 154
short-term binary tables 58
short-term data 52
show default groups 148, 150

 Index 535

showing SQL 454
Simple Network Management Protocol (SNMP)
318
Simple Object Access Protocol (SOAP) 220
single hub monitoring server 126
SKIP parameter 36
SLM (service level management) 15
SLM database 172
SLM Reports 169
SLM Server 169–170
SLMAdmin 170
SLMReport 170
Small Computer System Interface (SCSI) 50
SMF (System Management Facility) 203
SMP (symmetric multiprocessor) 254
SNMP (Simple Network Management Protocol)
318
SOA services 17
SOAP (Simple Object Access Protocol) 220
SOAP/HTTP(S) 17
SOAP/JMS 17
sockets 42
specific DB2 functions 393
split mirror 45, 51
SQL

statement 323
tuning scenario 292

SQL (Structured Query Language) 16
SQL Expression Field 448
SQL Select 318
SQL Server 311
standby 45

machine 45
mode 46

star schema 10, 13, 92
Start Collection 150
Static SQL 264
Steeleye 45
Stop Collection 151
Structured Query Language (SQL) 16
summarization 150
Summarization and Pruning agent 65, 129, 131,
139, 141, 160–162, 193–196, 207–211, 222

configuring 128
data processing sessions 106
environment file 105
historical data retention 103
internals 103
JVM 106

logs files 475
metadata 105
performance tuning 107
problems and solutions 476
scheduling 106
step by step 105
trace levels 475
troubleshooting 475

data is not pruned for systems that are no
longer managed 476
exception is thrown when connecting to TEP
Server 476
summarized tables are not created 476

summarized data 11
Sun Cluster 45
symmetric multiprocessor (SMP) 254
System Management Facility (SMF) 203

T
table scan (relation scan) 290
table schema 64
table space 153, 290
TAIL 322
tec_log_metric_dir 153–154
tec_log_metrics 153
tec_max_log_entries 153
tec_reception_sample_period 153
tec_rule_sample_class_size 154
tec_rule_sample_period 153
TEMS ENV file 473
TEP Desktop Client 329
TEP Server

client 147
TEP Web client 147, 329
test database connection 140
time slot filters 411
time zone 136, 145
time-based categories 103
timespan function 55
timestamp 60, 63–64
TIMESTAMP field 449
Tivoli Composite Application Manager 16
Tivoli Composite Application Manager for Internet
Service Monitoring 16
Tivoli Composite Application Manager for J2EE Op-
erations 17
Tivoli Composite Application Manager for SOA 17
Tivoli Composite Application Manager for Web-

536 Tivoli Management Services Warehouse and Reporting

Sphere 17
Tivoli Data Warehouse 111, 188
Tivoli Data Warehouse V1.x 11

architecture 11
Tivoli Data Warehouse V2.1

components 22
detailed list 63
differences with V.1.X 9

implementation differences 10
scalability differences 12
usability differences 11

firewall considerations 33
best practices 38
communications protocol selection 33
default port usage 34
installations with firewalls 38
multiple network interface cards 37
running out of sockets 34
special cases 38

high availability considerations 42
clustering and failover support 45
disk mirroring 48
failure behavior 43
RAID technology 48
recommendations 44

high level architecture 20
integration with Tivoli Enterprise Portal 20
key features 20
load projection spreadsheet 77
NT_Memory tables 62
supported platforms 22

Tivoli Enterprise Console
agent historical workspace 165
components 153
configuration 154
event database 158
event server 154
fixes 152
reception component 154
rule 154

Tivoli Enterprise Monitoring Agent 317
Tivoli Enterprise Monitoring Server 320–321, 325
Tivoli Enterprise Portal 25

Server 148
Tivoli Enterprise Portal (TEP) 11, 316–318,
324–325, 329, 370

object 324
Tivoli Enterprise Portal Server

host 131, 140

Tivoli Framework architecture 12
Tivoli Storage Manager 348

database 348
server 348
Universal Agent scenario 348

Tivoli Warehouse Proxy
architecture

exporter threads 95
work queue 95

components 95
hub TEMS 114
installation 111
internals 95
multiple Warehouse Proxies 101
scalability 100
step by step 99

TMZDIFF 64
total cost of ownership (TCO) 25
TTL value 323
tuning data movement 12

U
UA (Universal Agent) 318
UDP communication 33
UDP protocol 33
uncommitted read 307
unconfigure groups 150
Universal Agent (UA) 317–318
UNIX Agent 65
UNIX Disk

attribute group 63
table 64

UNIX file systems 62
UNIX OS 65, 69
usability differences 11
user ID 116

V
VERITAS Cluster Server 45
virtual tunnel 38
Visual Explain 293

W
wagtinit 152–153, 155
WAREHOUS 122
Warehouse

table 474

 Index 537

warehouse
traffic 41

Warehouse Driver field 122
warehouse interval 150, 335, 376
Warehouse Proxy 24, 99, 111–112, 114

configuration 115
data source configuration window 117
installation 111

Warehouse Proxy agent 100, 106, 115–116, 118,
126–127, 150, 162, 196, 211, 223

troubleshooting 472
application log 474
binary file size grows indefinitely 475
log files 472
multiple Warehouse Proxy agents 473
no historical data collected 474
problems and solutions 473
RAS1 trace 472
return codes 474
trace levels 472

WAREHOUSEID table 71
WAREHOUSELOG table 105
Web Health Console 11–12
Web Response Monitor 16
WebLogic server 219
Web-publishing with BIRT case study 391

Apache Tomcat 392
client requirements 391
client scenario 391
creating specific DB2 functions 394
daily system disks usage 393
define the filtering 407
define the report layout 409
detailed CPU usage per host 393
developed solution 392
installing the BIRT Designer 393
installing the BIRT Report Viewer 394
installing the DBC drivers 394
new data set 399
new data source 398
new report parameters 402
our lab environment 392
publishing results 424
report creation 397
sample reports 393
scheduling report 425

web-services.xml 226
WebSphere Administrative Console 170
WebSphere Application Server 17

Service Integration Bus 17
well-known port 35
wesvragt 152
wesvragt utility 152
wget command 425
what you see is what you get 10
WHERE statement 236
Windows docknt ODI file 69
Windows OS

agent 65
monitoring 63

Wolfpack 47
work queue 97
workspaces 165
WRAPPER 236
WRITETIME 64

X
X Window System 138
XML (Extensible Markup Language) 174

Z
z/OS PDS facility 53

538 Tivoli Management Services Warehouse and Reporting

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Tivoli M
anagem

ent Services
W

arehouse and Reporting

®

SG24-7290-00 ISBN 0738494666

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Tivoli Management
Services Warehouse
and Reporting

Insider’s guide to
Tivoli warehousing
and reporting

Tuning Tivoli Data
Warehouse for best
performance

BIRT-based
reporting solution
included

As the amount of management data that is gathered continues to
grow, the data is not being used effectively for IT business-relevant
decisions. IBM Tivoli Data Warehouse helps solve this problem by
being the central repository in which you can store historical data
about your IT infrastructure. This includes network devices and
connections, desktops, hardware, software, events, and other
information. Stored data is subsequently analyzed and used to
produce reports about the behavior of IT components and services.

This IBM Redbook discusses all aspects of IBM Tivoli Data
Warehouse V2.1 (the version that is shipped with IBM Tivoli
Monitoring V6.1) including deployment best practices, scalability,
performance optimization, external data integration, reporting, and
troubleshooting. As part of the book, we provide a reporting solution
for Tivoli Data Warehouse data, which is based on the Business
Intelligence and Reporting Tools (BIRT) technology. BIRT is a free,
Eclipse-based reporting tool.

We also provide an example of a commercial reporting solution: The
Crystal Reports solution from Business Objects. We also discuss two
solutions that are published on IBM OPAL Web site: QuickReporter for
IBM Tivoli Monitoring from Primeur and Warehouse Designer for IBM
Tivoli Monitoring 6.1 from Axibase. Both products are IBM certified
solutions, specifically designed for IBM Tivoli Monitoring.

This book is a reference for IT professionals who implement and use
a Tivoli Data Warehouse environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Chapter 1. Overview of IBM Tivoli Data Warehouse
	1.1 IBM IT Service Management
	1.2 IBM Tivoli Data Warehouse
	1.2.1 Tivoli Data Warehouse and CCMDB

	1.3 Tivoli’s reporting strategy
	1.3.1 Understanding a report

	1.4 Differences between Tivoli Data Warehouse V2.1 and 1.x
	1.4.1 Implementation differences
	1.4.2 Usability differences
	1.4.3 Scalability differences

	1.5 Tivoli products that exploit Tivoli Data Warehouse V2.1
	1.5.1 IBM Tivoli Monitoring
	1.5.2 IBM Tivoli Service Level Advisor
	1.5.3 IBM Tivoli Enterprise Console
	1.5.4 IBM Tivoli Composite Application Manager

	Chapter 2. IBM Tivoli Data Warehouse internals and deployment configurations
	2.1 Tivoli Data Warehouse Version 2.1: High-level architecture
	2.1.1 Tivoli Data Warehouse Version 2.1 supported platforms
	2.1.2 Recommended hardware considerations for the Tivoli Data Warehouse components

	2.2 Tivoli Data Warehouse: Deployment scenarios
	2.2.1 Small-to-medium installation (400 agents maximum)
	2.2.2 Large installation (4000 agents maximum)
	2.2.3 Huge installation (greater than 4000 agents)

	2.3 Firewall considerations
	2.4 High-availability considerations
	2.4.1 Tivoli Data Warehouse failure behavior
	2.4.2 Recommendations

	2.5 Historical data collection architecture
	2.5.1 Component flows
	2.5.2 Data tables and attributes
	2.5.3 Object definitions

	2.6 Storage considerations for Tivoli Data Warehouse Version 2.1
	2.7 Tivoli Data Warehouse Version 2.1 load projection spreadsheet
	2.7.1 How the spreadsheet works
	2.7.2 Details for the agent worksheets
	2.7.3 Detail of the Summary worksheet

	2.8 Deployment considerations for Tivoli Data Warehouse V1.X clients
	2.9 Tivoli Warehouse Proxy
	2.9.1 Tivoli Warehouse Proxy internals
	2.9.2 The Tivoli Warehouse Proxy step by step
	2.9.3 Multiple Warehouse Proxies

	2.10 Tivoli Summarization and Pruning agent
	2.10.1 Tivoli Summarization and Pruning agent internals
	2.10.2 Tivoli Summarization and Pruning agent step by step
	2.10.3 Tivoli Summarization and Pruning agent scheduling
	2.10.4 Tivoli Summarization and Pruning agent processing and time considerations
	2.10.5 Tivoli Summarization and Pruning agent performance tuning

	Chapter 3. Warehousing in action
	3.1 Overview of the lab environment for this book
	3.2 Configuring the Tivoli Warehouse Proxy
	3.2.1 On a Windows system
	3.2.2 On a Linux or an AIX system

	3.3 Configuring multiple Warehouse Proxies
	3.4 Configuring the Summarization and Pruning agent
	3.4.1 On a Windows system
	3.4.2 On a Linux or a UNIX system

	3.5 Configuring historical data collection
	3.6 Tivoli Enterprise Console and Data Warehouse integration
	3.6.1 Prerequisites
	3.6.2 Configuring Tivoli Enterprise Console
	3.6.3 Configuring the Tivoli Monitoring for Tivoli Enterprise Console agent
	3.6.4 Collecting the Tivoli Enterprise Console agent historical data
	3.6.5 Tivoli Enterprise Console agent: Historical workspace examples

	3.7 Configuring IBM Tivoli Service Level Advisor and Tivoli Data Warehouse integration
	3.7.1 Configuration steps on all supported systems
	3.7.2 Examples of IBM Tivoli Service Level Advisor reports using Tivoli Data Warehouse data

	3.8 IBM Tivoli Composite Application Manager for Response Time Tracking and Tivoli Data Warehouse integration
	3.8.1 IBM Tivoli Composite Application Manager for Response Time Tracking agent configuration
	3.8.2 Collecting the IBM Tivoli Composite Application Manager for Response Time Tracking agent historical data
	3.8.3 IBM Tivoli Composite Application Manager for Response Time Tracking agent workspace examples

	3.9 IBM Tivoli Composite Application Manager for WebSphere and Tivoli Data Warehouse integration
	3.9.1 IBM Tivoli Composite Application Manager for WebSphere agent configuration
	3.9.2 Collecting the IBM Tivoli Composite Application Manager for WebSphere agent historical data
	3.9.3 IBM Tivoli Composite Application Manager for WebSphere agent workspace examples

	3.10 Tivoli Composite Application Manager for SOA and Tivoli Data Warehouse integration
	3.10.1 IBM Tivoli Composite Application Manager for SOA agent configuration
	3.10.2 Enabling IBM Tivoli Composite Application Manager for SOA monitoring agent data collectors
	3.10.3 Collecting the IBM Tivoli Composite Application Manager for SOA agent historical data
	3.10.4 IBM Tivoli Composite Application Manager for SOA agent workspace examples

	Chapter 4. IBM Tivoli Data Warehouse tuning
	4.1 Using data marts
	4.1.1 Better reporting performance
	4.1.2 Data mart scenario

	4.2 Manual creation of data tables
	4.2.1 Benefits
	4.2.2 Procedure

	4.3 Batch option
	4.4 Database tuning
	4.5 Database parameter tuning
	4.5.1 DB2
	4.5.2 Oracle
	4.5.3 SQL Server

	4.6 Physical design considerations
	4.6.1 Hardware and operating system usage
	4.6.2 DB2
	4.6.3 Oracle
	4.6.4 SQL Server

	4.7 SQL tuning
	4.7.1 Review application SQL for efficiencies
	4.7.2 General SQL review process
	4.7.3 General SQL-ANSI tuning tips
	4.7.4 Database-specific tuning

	Chapter 5. Integrating data from external or third-party applications into Tivoli Data Warehouse
	5.1 The Tivoli Monitoring V6.1 Universal Agent
	5.1.1 IBM Tivoli Universal Agent architecture
	5.1.2 Data providers: Informing IBM Tivoli Universal Agent how to collect and monitor
	5.1.3 Metafiles: Informing Universal Agent what to collect and monitor
	5.1.4 Manipulating data with Tivoli Enterprise Portal
	5.1.5 Use cases for the Universal Agent
	5.1.6 Universal Agent deployment steps

	5.2 Warehousing Data using IBM Tivoli Monitoring 6.1 Universal Agent (script provider)
	5.2.1 Configuring the Tivoli Universal Agent
	5.2.2 Viewing the data in the Tivoli Enterprise Portal
	5.2.3 Warehousing the Universal Agent data
	5.2.4 Creating graphical views for historical data

	5.3 Warehousing data using IBM Tivoli Monitoring 6.1 Universal Agent (ODBC provider)
	5.3.1 Configuring the Tivoli Universal Agent
	5.3.2 Viewing the data in the Tivoli Enterprise Portal

	5.4 Tivoli Storage Manager Universal Agent in the Tivoli Enterprise Portal
	5.4.1 Warehousing the Universal Agent data

	5.5 Viewing data in Tivoli Enterprise Portal Server using an external ODBC data source

	Chapter 6. OPAL solutions and reporting with BIRT
	6.1 IBM Tivoli Open Process Automation Library
	6.1.1 QuickReporter for IBM Tivoli Monitoring (Primeur)
	6.1.2 Warehouse Designer for IBM Tivoli Monitoring 6.1 (Axibase)
	6.1.3 Warehouse reporting using BIRT

	6.2 Case study: Web-publishing with BIRT
	6.2.1 Client scenario and requirements
	6.2.2 Our lab environment
	6.2.3 The developed solution
	6.2.4 Report creation: Detailed CPU usage per host
	6.2.5 Report creation: Disk usage
	6.2.6 Report creation: DB2 table spaces
	6.2.7 Report creation: Tivoli Enterprise Console throughput
	6.2.8 Report creation: Tivoli Storage Manager usage
	6.2.9 Publishing results
	6.2.10 How to schedule a report

	Chapter 7. Reporting with Crystal Reports
	7.1 Crystal Reports
	7.2 The developed solution
	7.2.1 Installing Crystal Reports XI Release 2
	7.2.2 Creating a database connection
	7.2.3 Creating a data source in the report
	7.2.4 Report creation: CPU Usage by Host
	7.2.5 Report creation: Disk Usage

	Chapter 8. Troubleshooting
	8.1 Warehouse Proxy agent
	8.1.1 Environments with multiple Warehouse Proxy agents
	8.1.2 Problems and solutions

	8.2 Summarization and Pruning agent
	8.2.1 Problems and solutions

	8.3 RDBMS troubleshooting
	8.3.1 DB2
	8.3.2 Oracle
	8.3.3 Microsoft SQL Server

	Appendix A. Example mdl file for the Tivoli Storage Manager Universal Agent scenario
	Example mdl file for Tivoli Storage Manager Universal Agent scenario

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

